-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTheoryFig202005_MT.R
506 lines (468 loc) · 19.2 KB
/
TheoryFig202005_MT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#This is for making a figure to help introduce the theoretical ideas of influence
#of tail associations on variance of a sum and the limits of that.
set.seed(101)
library(copula)
source("./SkewnessAnd3CentMom.R")
#***functions
#Generates points from certain multivariate copulas with tail dependence
#
#Args
#corpar For the part of the distribution where the variable are
# not perfectly related they are generated with a normal
# copula with this parameter in all off-diagonal locations
#beta1, beta2 These specify where the tail dependence starts in each tail.
# Numbers between 0 and 1 with beta1<beta2.
#numpts Number of draws from the copula desired
#n Dimension
#
#Output - a matrix of dimensions numpts by 2
#
taildepcopdat<-function(corpar,beta1,beta2,numpts,n=2)
{
corpar<-matrix(corpar,n,n)
diag(corpar)<-1
corpar<-P2p(corpar)
ncop<-normalCopula(corpar,n,"un")
res<-rCopula(numpts,ncop)
tdornot<-runif(numpts)
inds<-(tdornot<beta1 | tdornot>beta2)
res[inds,]<-tdornot[inds]
res[!inds,]<-(beta2-beta1)*res[!inds,]+beta1
return(res)
}
#***tests
#res<-taildepcopdat(.5,.2,.8,1000)
#plot(res[,1],res[,2],type="p",pch=20,cex=.5)
#res<-taildepcopdat(.9,.3,.9,1000)
#plot(res[,1],res[,2],type="p",pch=20,cex=.5)
#res<-taildepcopdat(.8,.1,.9,1000,3)
#plot(res[,1],res[,2],type="p",pch=20,cex=.5)
#plot(res[,1],res[,3],type="p",pch=20,cex=.5)
#plot(res[,2],res[,3],type="p",pch=20,cex=.5)
#***Get the data you need for plotting
numpts<-100000
numscatpts<-500
dtouse<-20
#Functions which control the marginals
#margfunc<-function(c){qgamma(c,shape=2,scale=2)}
#margfunc<-function(c){qgamma(c,shape=7.5,scale=1)}
#margfunc<-function(c){qgamma(c,shape=9,scale=.5)}
margfunc<-function(c){qnorm(c)}
#get data for example 1 - normal copula case
dcop1<-taildepcopdat(.6,0,1,numpts,dtouse)
d1<-margfunc(dcop1)
cov1<-cov(d1)
diag(cov1)<-NA
cov1<-mean(cov1,na.rm=TRUE)
totX1<-apply(FUN=sum,X=d1,MARGIN=1)
vartotX1<-var(totX1)
sktotX1<-myskns(totX1)
empcdf1<-data.frame(x=sort(totX1),y=(1:numpts)/numpts)
#get data for example 2 - comonotonic
dcop2<-matrix(rep(runif(numpts),times=dtouse),numpts,dtouse)
d2<-margfunc(dcop2)
cov2<-cov(d2)
diag(cov2)<-NA
cov2<-mean(cov2,na.rm=TRUE)
totX2<-apply(FUN=sum,X=d2,MARGIN=1)
vartotX2<-var(totX2)
sktotX2<-myskns(totX2)
empcdf2<-data.frame(x=sort(totX2),y=(1:numpts)/numpts)
#get data for example 3 - upper-tail comonotonic
beta1<-0
beta2<-0.95
objfun<-function(rho)
{
dat<-margfunc(taildepcopdat(rho,beta1,beta2,numpts))
h<-cov(dat)[1,2]
return(c(h,(h-cov1)^2))
}
x<-seq(from=.01,to=0.99,by=0.01)
ycov<-NA*numeric(length(x))
yobj<-NA*numeric(length(x))
for (counter in 1:length(x))
{
h<-objfun(x[counter])
ycov[counter]<-h[1]
yobj[counter]<-h[2]
}
#plot(x,yobj,type="l")
#lines(range(x),rep(0,2),type="l")
#plot(x,ycov,type="l")
#lines(range(x),rep(cov1,2),type="l")
mod<-lm(ycov~x)
#lines(range(x),coef(mod)[1]+coef(mod)[2]*range(x),type="l")
parmtouse<-(cov1-coef(mod)[1])/coef(mod)[2]
#lines(rep(parmtouse,2),range(ycov),type="l")
dcop3<-taildepcopdat(parmtouse,beta1,beta2,numpts,dtouse)
d3<-margfunc(dcop3)
cov3<-cov(d3)
diag(cov3)<-NA
cov3<-mean(cov3,na.rm=TRUE)
totX3<-apply(FUN=sum,X=d3,MARGIN=1)
vartotX3<-var(totX3)
sktotX3<-myskns(totX3)
empcdf3<-data.frame(x=sort(totX3),y=(1:numpts)/numpts)
#get data for example 4 - lower-tail comonotonic
beta1<-0.05
beta2<-1
x<-seq(from=.01,to=0.99,by=0.01)
ycov<-NA*numeric(length(x))
yobj<-NA*numeric(length(x))
for (counter in 1:length(x))
{
h<-objfun(x[counter])
ycov[counter]<-h[1]
yobj[counter]<-h[2]
}
#plot(x,yobj,type="l")
#lines(range(x),rep(0,2),type="l")
#plot(x,ycov,type="l")
#lines(range(x),rep(cov1,2),type="l")
mod<-lm(ycov~x)
#lines(range(x),coef(mod)[1]+coef(mod)[2]*range(x),type="l")
parmtouse<-(cov1-coef(mod)[1])/coef(mod)[2]
#lines(rep(parmtouse,2),range(ycov),type="l")
dcop4<-taildepcopdat(parmtouse,beta1,beta2,numpts,dtouse)
d4<-margfunc(dcop4)
cov4<-cov(d4)
diag(cov4)<-NA
cov4<-mean(cov4,na.rm=TRUE)
totX4<-apply(FUN=sum,X=d4,MARGIN=1)
vartotX4<-var(totX4)
sktotX4<-myskns(totX4)
empcdf4<-data.frame(x=sort(totX4),y=(1:numpts)/numpts)
#get data for example 5
beta1<-0.05
beta2<-0.95
x<-seq(from=.01,to=0.99,by=0.01)
ycov<-NA*numeric(length(x))
yobj<-NA*numeric(length(x))
for (counter in 1:length(x))
{
h<-objfun(x[counter])
ycov[counter]<-h[1]
yobj[counter]<-h[2]
}
#plot(x,yobj,type="l")
#lines(range(x),rep(0,2),type="l")
#plot(x,ycov,type="l")
#lines(range(x),rep(cov1,2),type="l")
mod<-lm(ycov~x)
#lines(range(x),coef(mod)[1]+coef(mod)[2]*range(x),type="l")
parmtouse<-(cov1-coef(mod)[1])/coef(mod)[2]
#lines(rep(parmtouse,2),range(ycov),type="l")
dcop5<-taildepcopdat(parmtouse,beta1,beta2,numpts,dtouse)
d5<-margfunc(dcop5)
cov5<-cov(d5)
diag(cov5)<-NA
cov5<-mean(cov5,na.rm=TRUE)
totX5<-apply(FUN=sum,X=d5,MARGIN=1)
vartotX5<-var(totX5)
sktotX5<-myskns(totX5)
empcdf5<-data.frame(x=sort(totX5),y=(1:numpts)/numpts)
#other prep for consistency among plots
scatylim<-range(d1[,2],d2[,2],d3[,2],d4[,2],d5[,2],na.rm=TRUE)
scatxlim<-range(d1[,1],d2[,1],d3[,1],d4[,1],d5[,1],na.rm=TRUE)
histXbreaks<-seq(from=scatxlim[1],to=scatxlim[2],length.out=50)
histYbreaks<-seq(from=scatylim[1],to=scatylim[2],length.out=50)
histtotXxlim<-range(totX1,totX2,totX3,totX4,totX5,na.rm=TRUE)
histtotXbreaks<-seq(from=histtotXxlim[1],to=histtotXxlim[2],length.out=50)
topthreshrg<-c(20,60)
botthreshrg<-c(-60,-20)
#***plot dimensions, units inches
xmarght<-.5
ymargwd<-.5
totwd<-7
gap<-0.2 #general purpose gap, aside from the below purposes
cdfgap<-.25
rsgap<-.125 #gap on the right side of everything, also at the top of everything
scgap<-.2 #vertical gap between scenarios
spgap<-.1 #gap between a main panel and a marginal distribution panel
spf<-0.45 #fraction of the panel that a side panel for marginals is
panwd<-(totwd-2*gap-3*ymargwd-spgap-rsgap)/(3+spf)
smallpan<-panwd*spf
panht<-panwd
cdfpanht<-(panht+spgap+smallpan-cdfgap)/2
totht<-3*(xmarght+panht+spgap+smallpan)+2*scgap+rsgap
textsz<-.9
col3alpha<-rgb(red=255/256,green=165/256,blue=0/256,alpha=.3)
col3<-rgb(red=255/256,green=165/256,blue=0/256)
pdf(file="./Results/TheoryFig_MT.pdf",width=totwd,height=totht)
#***Example 1, top row of panels, normal copula
#scatterplot
panrownum<-3
par(fig=c((ymargwd)/totwd,
(ymargwd+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25)
plot(d1[1:numscatpts,1],d1[1:numscatpts,2],xaxt='n',pch=20,cex=.5,col=rgb(red=190/256,green=190/256,blue=190/256,alpha=.3),
xlim=scatxlim,ylim=scatylim)
axis(side=1,labels=TRUE)
mtext(expression(x[2]),side=2,line=1.2)
mtext(expression(x[1]),side=1,line=1.2)
text(scatxlim[1],scatylim[2],"A",adj=c(0,1))
#X1 marginal of scatterplot
par(fig=c((ymargwd)/totwd,
(ymargwd+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht+spgap)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht+spgap+smallpan)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h<-hist(d1[,1],breaks=histXbreaks,plot=FALSE)
x<-h$breaks
x<-x[2:length(x)]-diff(x)[1]/2
plot(x,h$counts,xaxt='n',yaxt='n',type="l")
axis(side=1,labels=FALSE)
axis(side=2,labels=TRUE)
mtext("Fr.",side=2,line=1.2)
mtext("Scenario 1",at=c(max(histXbreaks),max(h$counts)),adj=-0.1,padj=1.55,font=2,cex=1.3)
#X2 marginal of scatterplot
par(fig=c((ymargwd+panwd+spgap)/totwd,
(ymargwd+panwd+spgap+smallpan)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h<-hist(d1[,2],breaks=histYbreaks,plot=FALSE)
y<-h$breaks
y<-y[2:length(y)]-diff(y)[1]/2
plot(h$counts,y,yaxt='n',xaxt='n',type="l")
#axis(side=1,at=c(0,400),labels=c("0","400"))
axis(side=1,labels=TRUE)
axis(side=2,labels=FALSE)
mtext("Fr.",side=1,line=1.2)
#Histogram of totX
par(fig=c((2*ymargwd+panwd+spgap+smallpan+gap)/totwd,
(2*ymargwd+panwd+spgap+smallpan+gap+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h1<-hist(totX1,breaks=histtotXbreaks,plot=FALSE)
x1<-h1$breaks
x1<-x1[2:length(x1)]-diff(x1)[1]/2
plot(x1,h1$counts,xaxt='n',type="l")
axis(side=1,labels=TRUE)
mtext("Frequency",side=2,line=1.2)
mtext(bquote(cov(x[i],x[j]) %~~% .(round(cov1,3))),side=3,line=1.6,cex=textsz)
mtext(bquote(sd(x[tot]) == .(round(sqrt(vartotX1),3))),side=3,line=.8,cex=textsz)
mtext(bquote(sk(x[tot]) == .(round(sktotX1,3))),side=3,line=0,cex=textsz)
mtext(expression(x[tot]),side=1,line=1.2)
text(min(x1),max(h1$counts),"B",adj=c(0,1))
#cdf panel for exceeding large thresholds (top panel of the cdf panels)
par(fig=c((3*ymargwd+2*panwd+spgap+smallpan+2*gap)/totwd,
(3*ymargwd+3*panwd+spgap+smallpan+2*gap)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+cdfpanht+cdfgap)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+2*cdfpanht+cdfgap)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
inds<-which(empcdf1$x>topthreshrg[1] & empcdf1$x<topthreshrg[2])
x<-empcdf1$x[inds]
y<-1-empcdf1$y[inds]
plot(x,y,type="l")
mtext("P>th.",side=2,line=1.2)
text(mean(range(x)),max(range(y)),"C",adj=c(.5,1))
#cdf panel for falling under small thresholds (bottom panel of the cdf panels)
par(fig=c((3*ymargwd+2*panwd+spgap+2*gap+smallpan)/totwd,
(3*ymargwd+3*panwd+spgap+2*gap+smallpan)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+cdfpanht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
inds<-which(empcdf1$x>botthreshrg[1] & empcdf1$x<botthreshrg[2])
x<-empcdf1$x[inds]
y<-empcdf1$y[inds]
plot(x,y,type="l")
mtext("P<th.",side=2,line=1.2)
mtext("Threshold (th.)",side=1,line=1.2)
text(mean(range(x)),max(range(y)),"D",adj=c(.5,1))
#***Example 2, second row of panels, comonotonic case
#scatterplot
panrownum<-2
par(fig=c((ymargwd)/totwd,
(ymargwd+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
plot(d2[1:numscatpts,1],d2[1:numscatpts,2],xaxt='n',pch=20,cex=.5,col=rgb(red=255/256,green=0/256,blue=0/256,alpha=.3),
xlim=scatxlim,ylim=scatylim)
axis(side=1,labels=TRUE)
mtext(expression(x[2]),side=2,line=1.2)
mtext(expression(x[1]),side=1,line=1.2)
text(scatxlim[1],scatylim[2],"E",adj=c(0,1))
#X1 marginal of scatterplot
par(fig=c((ymargwd)/totwd,
(ymargwd+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht+spgap)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht+spgap+smallpan)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h<-hist(d2[,1],breaks=histXbreaks,plot=FALSE)
x<-h$breaks
x<-x[2:length(x)]-diff(x)[1]/2
plot(x,h$counts,xaxt='n',type="l")
axis(side=1,labels=FALSE)
mtext("Fr.",side=2,line=1.2)
mtext("Scenario C",at=c(max(histXbreaks),max(h$counts)),adj=-0.1,padj=1.55,font=2,cex=1.3)
#X2 marginal of scatterplot
par(fig=c((ymargwd+panwd+spgap)/totwd,
(ymargwd+panwd+spgap+smallpan)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h<-hist(d2[,2],breaks=histYbreaks,plot=FALSE)
y<-h$breaks
y<-y[2:length(y)]-diff(y)[1]/2
plot(h$counts,y,yaxt='n',xaxt='n',type="l")
axis(side=1,labels=TRUE)
axis(side=2,labels=FALSE)
mtext("Fr.",side=1,line=1.2)
#Histogram of totX
par(fig=c((2*ymargwd+panwd+spgap+smallpan+gap)/totwd,
(2*ymargwd+panwd+spgap+smallpan+gap+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h<-hist(totX2,breaks=histtotXbreaks,plot=FALSE)
x<-h$breaks
x<-x[2:length(x)]-diff(x)[1]/2
plot(x,h$counts,xaxt='n',type="l",col="red",ylim=range(h$counts,h1$counts))
lines(x1,h1$counts,xaxt='n',type="l",lty="dashed")
axis(side=1,labels=TRUE)
mtext("Frequency",side=2,line=1.2)
mtext(bquote(cov(x[i],x[j]) %~~% .(round(cov2,3))),side=3,line=1.6,cex=textsz)
#mtext(bquote(sd(Sigma[i] * x[i]) == .(round(sqrt(vartotX2),3))),side=3,line=.8,cex=textsz)
mtext(bquote(sd(x[tot]) == .(round(sqrt(vartotX2),3))),side=3,line=.8,cex=textsz)
#mtext(bquote(sk(Sigma[i] * x[i]) == .(round(sktotX2,3))),side=3,line=0,cex=textsz)
mtext(bquote(sk(x[tot]) == .(round(sktotX2,3))),side=3,line=0,cex=textsz)
mtext(expression(x[tot]),side=1,line=1.2)
text(min(x1),max(h1$counts),"F",adj=c(0,1))
#cdf panel for exceeding large thresholds (top panel of the cdf panels)
par(fig=c((3*ymargwd+2*panwd+spgap+smallpan+2*gap)/totwd,
(3*ymargwd+3*panwd+spgap+smallpan+2*gap)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+cdfpanht+cdfgap)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+2*cdfpanht+cdfgap)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
inds<-which(empcdf1$x>topthreshrg[1] & empcdf1$x<topthreshrg[2])
x<-empcdf1$x[inds]
y<-1-empcdf1$y[inds]
inds<-which(empcdf2$x>topthreshrg[1] & empcdf2$x<topthreshrg[2])
xn<-empcdf2$x[inds]
yn<-1-empcdf2$y[inds]
plot(x,y,type="l",lty="dashed",ylim=c(0,max(y,yn)))
lines(xn,yn,type='l',col='red')
mtext("P>th.",side=2,line=1.2)
text(mean(range(x)),max(range(y,yn)),"G",adj=c(.5,1))
#cdf panel for falling under small thresholds (bottom panel of the cdf panels)
par(fig=c((3*ymargwd+2*panwd+spgap+2*gap+smallpan)/totwd,
(3*ymargwd+3*panwd+spgap+2*gap+smallpan)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+cdfpanht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
inds<-which(empcdf1$x>botthreshrg[1] & empcdf1$x<botthreshrg[2])
x<-empcdf1$x[inds]
y<-empcdf1$y[inds]
inds<-which(empcdf2$x>botthreshrg[1] & empcdf2$x<botthreshrg[2])
xn<-empcdf2$x[inds]
yn<-empcdf2$y[inds]
plot(x,y,type="l",lty="dashed",ylim=c(0,max(y,yn)))
lines(xn,yn,type='l',col='red')
mtext("P<th.",side=2,line=1.2)
mtext("Threshold (th.)",side=1,line=1.2)
text(mean(range(x)),max(range(y,yn)),"H",adj=c(.5,1))
#***Example 3, third row of panels, comonotonicity in the right tails only
#scatterplot
panrownum<-1
par(fig=c((ymargwd)/totwd,
(ymargwd+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
plot(d3[1:numscatpts,1],d3[1:numscatpts,2],xaxt='n',pch=20,cex=.5,col=rgb(red=0/256,green=0/256,blue=255/256,alpha=.3),
xlim=scatxlim,ylim=scatylim)
axis(side=1,labels=TRUE)
mtext(expression(x[2]),side=2,line=1.2)
mtext(expression(x[1]),side=1,line=1.2)
text(scatxlim[1],scatylim[2],"I",adj=c(0,1))
#X1 marginal of scatterplot
par(fig=c((ymargwd)/totwd,
(ymargwd+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht+spgap)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht+spgap+smallpan)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h<-hist(d3[,1],breaks=histXbreaks,plot=FALSE)
x<-h$breaks
x<-x[2:length(x)]-diff(x)[1]/2
plot(x,h$counts,xaxt='n',type="l")
axis(side=1,labels=FALSE)
mtext("Fr.",side=2,line=1.2)
mtext("Scenario 2",at=c(max(histXbreaks),max(h$counts)),adj=-0.1,padj=1.55,font=2,cex=1.3)
#X2 marginal of scatterplot
par(fig=c((ymargwd+panwd+spgap)/totwd,
(ymargwd+panwd+spgap+smallpan)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h<-hist(d3[,2],breaks=histYbreaks,plot=FALSE)
y<-h$breaks
y<-y[2:length(y)]-diff(y)[1]/2
plot(h$counts,y,yaxt='n',xaxt='n',type="l")
axis(side=1,labels=TRUE)
axis(side=2,labels=FALSE)
mtext("Fr.",side=1,line=1.2)
#Histogram of totX
par(fig=c((2*ymargwd+panwd+spgap+smallpan+gap)/totwd,
(2*ymargwd+panwd+spgap+smallpan+gap+panwd)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+panht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
h<-hist(totX3,breaks=histtotXbreaks,plot=FALSE)
x<-h$breaks
x<-x[2:length(x)]-diff(x)[1]/2
plot(x,h$counts,xaxt='n',type="l",col="blue",ylim=range(h$counts,h1$counts))
lines(x1,h1$counts,xaxt='n',type="l",lty="dashed")
axis(side=1,labels=TRUE)
mtext("Frequency",side=2,line=1.2)
mtext(bquote(cov(x[i],x[j]) %~~% .(round(cov3,3))),side=3,line=1.6,cex=textsz)
mtext(bquote(sd(x[tot]) == .(round(sqrt(vartotX3),3))),side=3,line=.8,cex=textsz)
mtext(bquote(sk(x[tot]) == .(round(sktotX3,3))),side=3,line=0,cex=textsz)
mtext(expression(x[tot]),side=1,line=1.2)
text(min(x),max(h$counts),"J",adj=c(0,1))
#cdf panel for exceeding large thresholds (top panel of the cdf panels)
par(fig=c((3*ymargwd+2*panwd+spgap+smallpan+2*gap)/totwd,
(3*ymargwd+3*panwd+spgap+smallpan+2*gap)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+cdfpanht+cdfgap)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+2*cdfpanht+cdfgap)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
inds<-which(empcdf1$x>topthreshrg[1] & empcdf1$x<topthreshrg[2])
x<-empcdf1$x[inds]
y<-1-empcdf1$y[inds]
inds<-which(empcdf2$x>topthreshrg[1] & empcdf2$x<topthreshrg[2])
xr_l<-empcdf2$x[inds]
yr_l<-1-empcdf2$y[inds]
inds<-which(empcdf3$x>topthreshrg[1] & empcdf3$x<topthreshrg[2])
xn<-empcdf3$x[inds]
yn<-1-empcdf3$y[inds]
plot(x,y,type="l",lty="dashed",ylim=c(0,max(y,yn,yr_l)))
lines(xr_l,yr_l,type="l",lty="dashed",col="red")
lines(xn,yn,type='l',col='blue')
mtext("P>th.",side=2,line=1.2)
text(mean(range(x)),max(range(y,yn,yr_l)),"K",adj=c(.5,1))
#cdf panel for falling under small thresholds (bottom panel of the cdf panels)
par(fig=c((3*ymargwd+2*panwd+spgap+2*gap+smallpan)/totwd,
(3*ymargwd+3*panwd+spgap+2*gap+smallpan)/totwd,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght)/totht,
((panrownum-1)*(xmarght+panht+spgap+smallpan+scgap)+xmarght+cdfpanht)/totht),
mai=c(0,0,0,0),mgp=c(3,.15,0),tcl=-.25,new=TRUE)
inds<-which(empcdf1$x>botthreshrg[1] & empcdf1$x<botthreshrg[2])
x<-empcdf1$x[inds]
y<-empcdf1$y[inds]
inds<-which(empcdf2$x>botthreshrg[1] & empcdf2$x<botthreshrg[2])
xr_s<-empcdf2$x[inds]
yr_s<-empcdf2$y[inds]
inds<-which(empcdf3$x>botthreshrg[1] & empcdf3$x<botthreshrg[2])
xn<-empcdf3$x[inds]
yn<-empcdf3$y[inds]
plot(x,y,type="l",lty="dashed",ylim=c(0,max(y,yn,yr_s)))
lines(xr_s,yr_s,type="l",lty="dashed",col="red")
lines(xn,yn,type='l',col='blue')
mtext("P<th.",side=2,line=1.2)
mtext("Threshold (th.)",side=1,line=1.2)
text(mean(range(x)),max(range(y,yn,yr_s)),"L",adj=c(.5,1))
dev.off()