-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotateFunction.py
45 lines (41 loc) · 1.31 KB
/
rotateFunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Given an array of integers A and let n to be its length.
#
# Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
#
# F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
#
# Calculate the maximum value of F(0), F(1), ..., F(n-1).
#
# Note:
# n is guaranteed to be less than 105.
#
# Example:
#
# A = [4, 3, 2, 6]
#
# F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
# F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
# F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
# F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
#
# So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
# F(1) = 1 * 4 + 2 * 3 + 3 * 2 + 0 * 6
# F(1) - F (0) = 1 * 4 + 1 * 3 + 1 * 2 - 3 * 6
# F(2) = 2 * 4 + 3 * 3 + 0 * 2 + 1 * 6
# F(2) - F(1) = 1 * 4 + 1 * 3 - 3 * 2 + 1 * 6
# F(k) - F(k-1) = sum (A) - n * A_(n-k)
class Solution(object):
def maxRotateFunction(self, A):
"""
:type A: List[int]
:rtype: int
"""
n = len(A)
if n == 0 :
return 0
sumA = sum(A)
Fk = [0] * n
Fk[0] = sum(i * j for (i,j) in zip(range(n), A))
for i in range(1,n):
Fk[i] = Fk[i-1] + sumA - n * A[n-i]
return max(Fk)