-
Notifications
You must be signed in to change notification settings - Fork 184
/
Copy pathconvert_data.m
120 lines (98 loc) · 3.6 KB
/
convert_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
function convert_data()
source_root_dir = '.';
target_root_dir = 'viton_resize';
flag_resize = true;
fine_height = 256;
fine_width = 192;
% transfer data root
if ~exist(target_root_dir,'dir');
mkdir(target_root_dir);
end
modes = {'train', 'test'};
for i = 1:length(modes);
fprintf('Start convert %s\n', modes{i});
convert(source_root_dir, target_root_dir, modes{i}, flag_resize, fine_height, fine_width);
end
end
function convert(source_root_dir, target_root_dir, mode, flag_resize, fine_height, fine_width)
cmap = importdata('human_colormap.mat');
point_num = 18;
% make new dir
dir_list = {'cloth', 'cloth-mask', 'image', 'image-parse', 'pose'};
if ~exist([target_root_dir '/' mode],'dir');
mkdir([target_root_dir '/' mode]);
end
for i = 1:length(dir_list);
if ~exist([target_root_dir '/' mode '/' dir_list{i}],'dir');
mkdir([target_root_dir '/' mode '/' dir_list{i}]);
end
end
% read train pairs
[im_names, cloth_names] = textread(['viton_' mode '_pairs.txt'],'%s %s\n');
N = length(im_names);
for i = 1:N;
imname = im_names{i} ;
cname = cloth_names{i};
fprintf('%d/%d: %s %s\n', i, N, imname, cname);
% generate cloth mask
im_c = imread([source_root_dir '/' 'women_top/' cname]);
% generate parsing result
im = imread([source_root_dir '/' 'women_top/' imname]);
h = size(im,1);
w = size(im,2);
s_name = strrep(imname,'.jpg','.mat');
segment = importdata([source_root_dir '/' 'segment/' s_name]);
segment = segment';
if h > w
segment = segment(:,1:int32(641.0*w/h));
else
segment = segment(1:int32(641.8*h/w),:);
end
segment = imresize(segment, [h,w], 'nearest');
% load pose
pose = importdata([source_root_dir '/' 'pose/' s_name]);
key_points = zeros(point_num,3);
for j = 1:point_num
index = int32(pose.subset(j))+1;
if index ~= 0
key_points(j,:) = pose.candidate(index,1:3);
end
end
% save cloth & image, resize the results
if flag_resize;
im_c = imresize(im_c, [fine_height, fine_width], 'bilinear');
imwrite(im_c, [target_root_dir '/' mode '/cloth/' cname]);
im = imresize(im, [fine_height, fine_width], 'bilinear');
imwrite(im, [target_root_dir '/' mode '/image/' imname]);
segment = imresize(segment, [fine_height, fine_width], 'nearest');
for j = 1:point_num
key_points(j,1) = key_points(j,1) / w * fine_width;
key_points(j,2) = key_points(j,2) / h * fine_height;
end
else
copyfile([source_root_dir '/' 'women_top/' cname], ...
[target_root_dir '/' mode '/cloth/' cname]);
copyfile([source_root_dir '/' 'women_top/' imname] , ...
[target_root_dir '/' mode '/image/' imname]);
end
% save cloth mask
mask = double((im_c(:,:,1) <= 250) & (im_c(:,:,2) <= 250) & (im_c(:,:,3) <= 250));
mask = imfill(mask);
mask = medfilt2(mask);
imwrite(mask, [target_root_dir '/' mode '/cloth-mask/' cname]);
% save parsing result
segment = uint8(segment);
pname = strrep(imname, '.jpg', '.png');
imwrite(segment,cmap,[target_root_dir '/' mode '/image-parse/' pname]);
% save the pose info
key_name = strrep(imname, '.jpg', '_keypoints.json');
f = fopen([target_root_dir '/' mode '/pose/' key_name], 'w');
fprintf(f,'{"version": 1.0, "people": [{"face_keypoints": [], "pose_keypoints": ');
key_points = reshape(key_points', 1, 54);
str_key_points = mat2str(key_points);
str_key_points = strrep(str_key_points,' ', ', ');
fprintf(f,str_key_points);
fprintf(f,', "hand_right_keypoints": [], "hand_left_keypoints": []}]} ');
fclose(f);
end
end