forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGRU.lua
247 lines (208 loc) · 8.85 KB
/
GRU.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
------------------------------------------------------------------------
--[[ GRU ]]--
-- Gated Recurrent Units architecture.
-- http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-gruGRU-rnn-with-python-and-theano/
-- Expects 1D or 2D input.
-- The first input in sequence uses zero value for cell and hidden state
------------------------------------------------------------------------
assert(not nn.GRU, "update nnx package : luarocks install nnx")
local GRU, parent = torch.class('nn.GRU', 'nn.AbstractRecurrent')
function GRU:__init(inputSize, outputSize, rho)
parent.__init(self, rho or 9999)
self.inputSize = inputSize
self.outputSize = outputSize
-- build the model
self.recurrentModule = self:buildModel()
-- make it work with nn.Container
self.modules[1] = self.recurrentModule
self.sharedClones[1] = self.recurrentModule
-- for output(0), cell(0) and gradCell(T)
self.zeroTensor = torch.Tensor()
self.cells = {}
self.gradCells = {}
end
-------------------------- factory methods -----------------------------
function GRU:buildModel()
-- input : {input, prevOutput}
-- output : {output}
-- Calculate all four gates in one go : input, hidden, forget, output
self.i2g = nn.Linear(self.inputSize, 2*self.outputSize)
self.o2g = nn.LinearNoBias(self.outputSize, 2*self.outputSize)
local para = nn.ParallelTable():add(self.i2g):add(self.o2g)
local gates = nn.Sequential()
gates:add(para)
gates:add(nn.CAddTable())
-- Reshape to (batch_size, n_gates, hid_size)
-- Then slize the n_gates dimension, i.e dimension 2
gates:add(nn.Reshape(2,self.outputSize))
gates:add(nn.SplitTable(1,2))
local transfer = nn.ParallelTable()
transfer:add(nn.Sigmoid()):add(nn.Sigmoid())
gates:add(transfer)
local concat = nn.ConcatTable()
concat:add(nn.Identity()):add(gates)
local seq = nn.Sequential()
seq:add(concat)
seq:add(nn.FlattenTable()) -- x(t), s(t-1), r, z
-- Rearrange to x(t), s(t-1), r, z, s(t-1)
local concat = nn.ConcatTable() --
concat:add(nn.NarrowTable(1,4)):add(nn.SelectTable(2))
seq:add(concat):add(nn.FlattenTable())
-- h
local hidden = nn.Sequential()
local concat = nn.ConcatTable()
local t1 = nn.Sequential()
t1:add(nn.SelectTable(1)):add(nn.Linear(self.inputSize, self.outputSize))
local t2 = nn.Sequential()
t2:add(nn.NarrowTable(2,2)):add(nn.CMulTable()):add(nn.LinearNoBias(self.outputSize, self.outputSize))
concat:add(t1):add(t2)
hidden:add(concat):add(nn.CAddTable()):add(nn.Tanh())
local z1 = nn.Sequential()
z1:add(nn.SelectTable(4))
z1:add(nn.SAdd(-1, true)) -- Scalar add & negation
local z2 = nn.Sequential()
z2:add(nn.NarrowTable(4,2))
z2:add(nn.CMulTable())
local o1 = nn.Sequential()
local concat = nn.ConcatTable()
concat:add(hidden):add(z1)
o1:add(concat):add(nn.CMulTable())
local o2 = nn.Sequential()
local concat = nn.ConcatTable()
concat:add(o1):add(z2)
o2:add(concat):add(nn.CAddTable())
seq:add(o2)
return seq
end
------------------------- forward backward -----------------------------
function GRU:updateOutput(input)
local prevOutput
if self.step == 1 then
prevOutput = self.userPrevOutput or self.zeroTensor
if input:dim() == 2 then
self.zeroTensor:resize(input:size(1), self.outputSize):zero()
else
self.zeroTensor:resize(self.outputSize):zero()
end
else
-- previous output and cell of this module
prevOutput = self.output
end
-- output(t) = gru{input(t), output(t-1)}
local output
if self.train ~= false then
self:recycle()
local recurrentModule = self:getStepModule(self.step)
-- the actual forward propagation
output = recurrentModule:updateOutput{input, prevOutput}
else
output = self.recurrentModule:updateOutput{input, prevOutput}
end
if self.train ~= false then
local input_ = self.inputs[self.step]
self.inputs[self.step] = self.copyInputs
and nn.rnn.recursiveCopy(input_, input)
or nn.rnn.recursiveSet(input_, input)
end
self.outputs[self.step] = output
self.output = output
self.step = self.step + 1
self.gradPrevOutput = nil
self.updateGradInputStep = nil
self.accGradParametersStep = nil
self.gradParametersAccumulated = false
-- note that we don't return the cell, just the output
return self.output
end
function GRU:backwardThroughTime(timeStep, rho)
assert(self.step > 1, "expecting at least one updateOutput")
self.gradInputs = {} -- used by Sequencer, Repeater
timeStep = timeStep or self.step
local rho = math.min(rho or self.rho, timeStep-1)
local stop = timeStep - rho
if self.fastBackward then
for step=timeStep-1,math.max(stop,1),-1 do
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local gradOutput = self.gradOutputs[step]
if self.gradPrevOutput then
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], self.gradPrevOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
end
local scale = self.scales[step]
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local inputTable = {self.inputs[step], output, cell}
local gradInputTable = recurrentModule:backward(inputTable, gradOutput, scale)
gradInput, self.gradPrevOutput = unpack(gradInputTable)
table.insert(self.gradInputs, 1, gradInput)
if self.userPrevOutput then self.userGradPrevOutput = self.gradPrevOutput end
end
self.gradParametersAccumulated = true
return gradInput
else
local gradInput = self:updateGradInputThroughTime()
self:accGradParametersThroughTime()
return gradInput
end
end
function GRU:updateGradInputThroughTime(timeStep, rho)
assert(self.step > 1, "expecting at least one updateOutput")
self.gradInputs = {}
local gradInput
timeStep = timeStep or self.step
local rho = math.min(rho or self.rho, timeStep-1)
local stop = timeStep - rho
for step=timeStep-1,math.max(stop,1),-1 do
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local gradOutput = self.gradOutputs[step]
if self.gradPrevOutput then
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], self.gradPrevOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
end
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local inputTable = {self.inputs[step], output}
local gradInputTable = recurrentModule:updateGradInput(inputTable, gradOutput)
gradInput, self.gradPrevOutput = unpack(gradInputTable)
table.insert(self.gradInputs, 1, gradInput)
if self.userPrevOutput then self.userGradPrevOutput = self.gradPrevOutput end
end
return gradInput
end
function GRU:accGradParametersThroughTime(timeStep, rho)
timeStep = timeStep or self.step
local rho = math.min(rho or self.rho, timeStep-1)
local stop = timeStep - rho
for step=timeStep-1,math.max(stop,1),-1 do
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local scale = self.scales[step]
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local inputTable = {self.inputs[step], output}
local gradOutput = (step == self.step-1) and self.gradOutputs[step] or self._gradOutputs[step]
recurrentModule:accGradParameters(inputTable, gradOutput, scale)
end
self.gradParametersAccumulated = true
return gradInput
end
function GRU:accUpdateGradParametersThroughTime(lr, timeStep, rho)
timeStep = timeStep or self.step
local rho = math.min(rho or self.rho, timeStep-1)
local stop = timeStep - rho
for step=timeStep-1,math.max(stop,1),-1 do
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local scale = self.scales[step]
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local inputTable = {self.inputs[step], output}
local gradOutput = (step == self.step-1) and self.gradOutputs[step] or self._gradOutputs[step]
recurrentModule:accUpdateGradParameters(inputTable, self.gradOutputs[step], lr*scale)
end
return gradInput
end