-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
231 lines (194 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import argparse
import torch
import os
from utils import *
from training import *
from config import Config
def get_args():
parser = argparse.ArgumentParser(description="Model training/testing arguments")
def bool_(x):
return False if str(x).strip().lower() in ("0", "false", "f", "no", "n") else bool(x)
# For LNRL
parser.add_argument("--sigma", type=int, default=600, metavar="SIGMA",
help=r"noise level (number of samples): \sigma = 3 \times \sigma_s (default: 600)")
# Mode
parser.add_argument("--mode", type=str, default="train_test", metavar="MODE",
help="train/test/train_test (default:'train_test')")
# Model
parser.add_argument("--model-name", default="lnrl", type=str, metavar="MODEL_NAME",
help="model name: 'seist' or 'lnrl' (default: lnrl)")
parser.add_argument("--checkpoint", default="", type=str, metavar="CHECKPOINT",
help="path to latest checkpoint (default: none)")
parser.add_argument("--use-torch-compile", type=bool_, default=False, metavar="USE_TORCH_COMPILE",
help="if `True`, `torch.compile` will be called before training (default:True)")
# Random seed
parser.add_argument("--seed", default=0, type=int, metavar="SEED",
help="random seed for everything (default:0)")
# Logs
parser.add_argument("--log-base", default="./logs", type=str, metavar="LOG_DIR",
help="path to save logs (default: './logs')")
parser.add_argument("--log-step", default=4, type=int, metavar="log_step",
help="print metrics every log_step steps (default: 4)")
parser.add_argument("--use-tensorboard", default=True, type=bool_, metavar="USE_TENSORBOARD",
help="whether to use tensorboard (default: True)")
# Save results
parser.add_argument("--save-test-results", default=True, type=bool_, metavar="SAVE_TEST_RESULTS",
help="whether to save test restuls (default: True)")
# Distributed training
parser.add_argument("--find-unused-parameters", type=bool_, default=False, metavar="FUP",
help="argument of `torch.nn.parallel.DistributedDataParallel` (default:False)")
# Single GPU
parser.add_argument("--device", type=str, default="cuda:0", metavar="DEVICE",
help="device. If distributed mode is initialized, this argument will be ignored. (default:'cuda:0')")
# Dataset
parser.add_argument("--data", default="/root/data/Datasets/SOS/all", metavar="DATA", type=str,
help="path to dataset")
parser.add_argument("--dataset-name", default="sos", type=str, metavar="DATASET_NAME",
help="name of dataset ('sos' / ...) (default: 'sos')")
parser.add_argument("--data-split", type=bool_, default=True, metavar="DATA_SPLIT",
help="whether split dataset to train/val/test (default:True)")
parser.add_argument("--train-size", type=float, default=0.8, metavar="TRAIN_SIZE",
help="size of train set (default:0.8)")
parser.add_argument("--val-size", type=float, default=0.1, metavar="VAL_SIZE",
help="size of val set (default:0.1)")
# Data loader
parser.add_argument("--shuffle", type=bool_, default=True, metavar="SHUFFLE",
help="whether shuffle data. (default:True)")
parser.add_argument("--workers", default=8, type=int, metavar="WORKERS",
help="number of data loading workers (default: 8)")
parser.add_argument("--pin-memory", default=True, type=bool_, metavar="PM",
help="pin memory (default: True)")
# Data preprocess
parser.add_argument("--in-samples", default=6000, type=int, metavar="IN_SAMPLES",
help="the length of input data (default: 6000)")
parser.add_argument("--label-width", type=float, default=0.1, metavar="LABEL_WIDTH",
help="width of soft-label (in seconds) (default:0.1)")
parser.add_argument("--label-shape", type=str, default="gaussian", metavar="LABEL_SHAPE",
help="shape of soft-label ('gaussian' 'triangle' 'box' or 'sigmoid') (default: gaussian)")
parser.add_argument("--coda-ratio", default=2.0, type=float, metavar="CODA_RATIO",
help="coda ratio (default:2)")
parser.add_argument("--norm-mode", default="std", type=str, metavar="NORM_MODE",
help="mode of normalization ('max','std' or '') (default: 'std')")
parser.add_argument("--min-snr", type=float, default=-float("inf"), metavar="MIN_SNR",
help="waveform will be regarded as noise if `all(snr)<min_snr` (default:-inf)")
parser.add_argument("--p-position-ratio", type=float, default=-1, metavar="P_POSITION_RATIO",
help="The position of phase-p in the waveform. Only takes effect when `0 <= p_position_ratio <= 1` (default: -1)")
# Data augmentation
parser.add_argument("--augmentation", type=bool_, default=True, metavar="AUGMENTATION",
help="whether use data augmentation. (default:True)")
parser.add_argument("--add-event-rate", default=0.0, type=float, metavar="ADD_EV_RATE",
help="Add event rate (default:0.0)")
parser.add_argument("--max-event-num", default=1, type=int, metavar="MAX_EV_NUM",
help="max number of event (default:1)")
parser.add_argument("--shift-event-rate", default=0.2, type=float, metavar="SHIFT_EV_RATE",
help="shift event rate (default:0.2)")
parser.add_argument("--add-noise-rate", default=0.4, type=float, metavar="ADD_NOISE_RATE",
help="add noise rate (default:0.4)")
parser.add_argument("--add-gap-rate", default=0.4, type=float, metavar="ADD_GAP_RATE",
help="add gap rate (default:0.4)")
parser.add_argument("--min-event-gap", default=0.5, type=float, metavar="MIN_EV_GAP",
help="minimum event gap (in seconds) (default:0.5)")
parser.add_argument("--drop-channel-rate", default=0.4, type=float, metavar="DROP_CH_RATE",
help="drop channel rate (default:0.4)")
parser.add_argument("--scale-amplitude-rate", default=0.4, type=float, metavar="SCALE_AMP_RATE",
help="scale amplitude rate (default:0.4)")
parser.add_argument("--pre-emphasis-rate", default=0.4, type=float, metavar="PRE_EMPH_RATE",
help="pre-emphaseis rate (default:0.4)")
parser.add_argument("--pre-emphasis-ratio", default=0.97, type=float, metavar="PRE_EMPH_RATIO",
help="pre-emphasis ratio (default:0.97)")
parser.add_argument("--generate-noise-rate", default=0.05, type=float, metavar="GEN_NOISE_RATE",
help="generate noise rate (default:0.05)")
parser.add_argument("--mask-percent", default=0, type=int, metavar="MASK_PERCENT",
help="the percentage of the total mask window size to the entire waveform length,"
" where the window size is 0.5s (range:0-100) (default: 0)")
parser.add_argument("--noise-percent", default=0, type=int, metavar="NOISE_PERCENT",
help="the percentage of the total noise window size to the entire waveform length,"
" where the window size is 0.5s (range:0-100) (default: 0)")
# Train
parser.add_argument("--epochs", default=200, type=int, metavar="EPOCHS",
help="number of total epochs (default: 200)")
parser.add_argument("--patience", default=30, type=int, metavar="PATIENCE",
help="how many epochs to wait before stopping when loss is not improving (default: 30)")
parser.add_argument("--steps", default=0, type=int, metavar="STEPS",
help="number of total steps. if `steps > 0`, `epochs` will be ignored. (default: 0)")
parser.add_argument("--start-epoch", default=0, type=int, metavar="START_EPOCH",
help="manual epoch number (useful on restarts) (default: 0)")
parser.add_argument("--batch-size", default=300, type=int, metavar="BATCH_SIZE",
help="batch size (default: 300), this is the batch size of each worker (process)")
parser.add_argument("--optim", default="Adam", type=str, metavar="OPTIM",
help="name of optimizer (default: 'Adam')")
parser.add_argument("--momentum", default=0.9, type=float, metavar="MOMENTUM",
help="momentum of optimizer SGD (default: 0.9)")
parser.add_argument("--weight_decay", default=0.0, type=float, metavar="WEIGHT_DECAY",
help="weight_decay of optimizer (default: 0.)")
parser.add_argument("--use-lr-scheduler", default=True, type=bool_, metavar="USE_LR_SCHEDULER",
help="whether use lr_scheduler (default: True)")
parser.add_argument("--lr-scheduler-mode", default="exp_range", metavar="LR_SCHEDULER_MODE", type=str,
help="one of {'triangular', 'triangular2', 'exp_range'} (default: 'exp_range')")
parser.add_argument("--base-lr", default=8e-5, type=float, metavar="BASE_LR",
help="minimum learning rate (default: 5e-5)")
parser.add_argument("--max-lr", default=1e-3, type=float, metavar="MAX_LR",
help="maximum learning rate (default: 1e-3)")
parser.add_argument("--warmup-steps", default=2000, type=float, metavar="WARMUP_STEPS",
help="number of training iterations in the increasing half of a cycle."
" If `0 < warmup_steps < 1`, it will be treated as a ratio of total steps. (default: 2000)")
parser.add_argument("--down-steps", default=3000, type=float, metavar="DOWN_STEPS",
help="number of training iterations in the decreasing half of a cycle."
" If `0 < down_steps < 1`, it will be treated as a ratio of total steps."
" If `down_steps == 0`, it will be set to `steps - warmup_steps`(default: 3000)")
# Val/Test
parser.add_argument("--time-threshold", default=0.05, type=float, metavar="TIME_THRESHOLD",
help="Residual threshold (in seconds) (default: 0.05)")
parser.add_argument("--min-peak-dist", default=1.0, type=float, metavar="MIN_PEAK_DIST",
help="Detect peaks that are at least separated by minimum peak distance (in seconds) (defult: 1.0)")
parser.add_argument("--ppk-threshold", default=0.3, type=float, metavar="PPK_THRESHOLD",
help="Probability threshold of phase-P PicKing (default: 0.3)")
parser.add_argument("--spk-threshold", default=0.3, type=float, metavar="SPK_THRESHOLD",
help="Probability threshold of phase-S PicKing (default: 0.3)")
parser.add_argument("--det-threshold", default=0.5, type=float, metavar="DET_THRESHOLD",
help="Probability threshold of DETection (default: 0.5)")
parser.add_argument("--max-detect-event-num", default=1, type=int, metavar="MAX_DETECT_EV_NUM",
help="max number of detected events (default: 1)")
args = parser.parse_args()
if not 0<=args.p_position_ratio<=1:
args.p_position_ratio = -1
else:
print(f"P position ratio: {args.p_position_ratio}")
args.log_base = os.path.abspath(args.log_base)
args.data = os.path.abspath(args.data)
if args.checkpoint:
args.checkpoint = os.path.abspath(args.checkpoint)
return args
def main_worker(args, device):
log_dir = (
os.path.join(args.log_base, f"{get_time_str()}_{args.model_name}_{args.dataset_name}")
if not args.checkpoint
else args.checkpoint.split("checkpoints")[0]
)
logger.set_logdir(log_dir)
logger.set_logger("global")
if is_main_process():
logger.info(f"device: {device}")
logger.info(f"pid: {os.getpid()}")
logger.info(f"\n{strfargs(args, Config)}")
mode = args.mode.split("_")
if "train" in mode:
setup_seed(args.seed)
ckpt_path = train_worker(args,device)
args.checkpoint = ckpt_path
if "test" in mode:
setup_seed(args.seed)
test_worker(args,device)
if not (set(("train", "test")) & set(mode)):
raise ValueError(
f"`mode` must be 'train','test' or 'train_test', got '{args.mode}'"
)
if __name__ == "__main__":
args = get_args()
args.distributed = init_distributed_mode()
if args.distributed:
args.device = f"cuda:{get_local_rank()}"
device = torch.device(args.device)
if args.use_torch_compile and device.type == "cuda":
torch.set_float32_matmul_precision("high")
main_worker(args, device)