-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfearcloud_FitPMFs.m
127 lines (104 loc) · 4.9 KB
/
fearcloud_FitPMFs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
function [out]=fearcloud_FitPMFs(subjects)
for subject=subjects
%
fig=figure('units','normalized','position',[0 1 0.7 0.9]);
suptitle(sprintf('Fitting Subject %g',subject));
out.params1 = NaN(4,4);
out.Likelihood = NaN(4,1);
out.ExitFlag = NaN(4,1);
cr=0;
for run = [1 5];
for chain = [1 2];
StimLevels = 0:11.25:180;
x = linspace(0,180,1000);
%get responses, and resulting PMF from PAL algorithm
responses = fearcloud_GetPMFresponses(subject,run,chain,'yes');
pmf = isn_getPMF(subject,run);
p = isn_GetData(subject,run,'stimulation');p = p.p;
i = ~isnan(responses.yes);
NumPos = responses.yes(i); % number of "different" responses
OutOfNum = responses.num(i); % number of presentations at that level
PropCorrectData = NumPos./OutOfNum;
StimLevels = StimLevels(i);
minn = 5;
maxn = 25;
dotsize = Scale(sum(~isnan(p.psi.log.xrounded(:,:,chain)),2))*(maxn-minn)+minn;
dotsize = dotsize(i);
error = nanstd(p.psi.log.xrounded(:,:,chain),0,2);
error = error(i);
% take the priors as search grid (gamma extended to .5, resolution very low
% % for little Laptop of Lea's)
% searchGrid.alpha = pmf.alpha(chain);
% searchGrid.beta = 4;
% searchGrid.gamma = PropCorrectData(1);
% searchGrid.lambda = 1-PropCorrectData(end);
% params0 = [ searchGrid.alpha searchGrid.beta searchGrid.gamma searchGrid.lambda];
%
%
% %ooor use the params that PAL gave as results
searchGrid.alpha = 80;
searchGrid.beta = 2;%10.^pmf.beta(chain);
searchGrid.gamma = PropCorrectData(1);%pmf.gamma(chain);
searchGrid.lambda = 1-PropCorrectData(end);%pmf.lambda(chain);
params0 = [ searchGrid.alpha searchGrid.beta searchGrid.gamma searchGrid.lambda];
%oooor use the params that the first Weibull try gave as subject's
% %mean across all four PMFs:
% data=load('C:\Users\onat\Desktop\Lea\Weibulldata_allsubj_1st.mat','fits');
% data=data.fits;
%
% submean = mean(data(subject).params1(1:4,:),1);
%
% searchGrid.alpha = submean(1);
% searchGrid.beta = submean(2);
% searchGrid.gamma = submean(3);
% searchGrid.lambda = submean(4);
%
%
% params0 = [ searchGrid.alpha searchGrid.beta searchGrid.gamma searchGrid.lambda];
%
% % paramsFree = [1 1 1 1];
PF = @PAL_Weibull;
%% run the Fit!
options = PAL_minimize('options');
options.MaxIter = 10.^6;
options.MaxFunEvals = 10.^6;
options.Display = 'On';
options.TolX = 10.^-4;
options.TolFun = 10.^-4;
% [paramsValues LL exitflag output] = PAL_PFML_Fit(StimLevels, NumPos, OutOfNum, searchGrid, paramsFree, PF,'lapseLimits',[0 1],'guessLimits',[0 1],'searchoptions',options);
X = abs(p.psi.log.x(chain,:));
Y = abs(p.psi.log.response(chain,:));
% funny = @(params) sum( (Y - PF(params,X)).^2);
funny = @(params) sum(-log (binopdf(NumPos,OutOfNum,PF(params,StimLevels))));
%params(end)
options = optimset('Display','iter','maxfunevals',10000,'tolX',10^-12,'tolfun',10^-12,'MaxIter',10000,'Algorithm','interior-point');
[o.params1, o.Likelihood, o.ExitFlag] = fmincon(funny, params0, [],[],[],[],[-Inf -Inf 0 0],[Inf Inf 1 1],[],options);
out.params1(chain+cr,:) = o.params1;
out.Likelihood(chain+cr,1) = o.Likelihood;
out.ExitFlag(chain+cr,1) = o.ExitFlag ;
out.subInd = subject;
%% plot the Fit
Fit = PF(o.params1,x);
subplot(2,2,chain+cr)
hold on;
plot(x,PAL_CumulativeNormal([pmf.alpha(chain) 10.^(pmf.beta(chain)) pmf.gamma(chain) pmf.lambda(chain)],x),'k','linewidth',3);
plot(x,PF([searchGrid.alpha searchGrid.beta searchGrid.gamma searchGrid.lambda],x),'r-','Linewidth',3);
plot(x,Fit,'g-','Linewidth',3);
xlim([-5 180]);
legend('PALs PMF','InitialValues','New Fit','location','southeast')
title(sprintf('Run %g, Chain %g, L = %03g',run,chain,o.Likelihood))
for i = 1:length(StimLevels)
errorbar(StimLevels(i),PropCorrectData(i),error(i),'o','Markersize',dotsize(i),'markerfacecolor',[0.3 0.3 0.3],'color',[0.3 0.3 0.3]);
end
hold off;
end
cr=cr+2;
end
%%
% save_path = sprintf('%sfigures/%s_test.eps',isn_GetPath(subject,run),mfilename);
% hgexport(fig,save_path);
% saveas(fig,sprintf('%sfigures/%s_png_test.png',isn_GetPath(subject,run),mfilename));
% saveas(fig,sprintf('%sfigures/%s_test.fig',isn_GetPath(subject,run),mfilename));
% close all
end
end