This repository has been archived by the owner on Dec 9, 2023. It is now read-only.
forked from Flode-Labs/vid2densepose
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvideo2openpose2.py
195 lines (163 loc) · 6.02 KB
/
video2openpose2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
from controlnet_aux import OpenposeDetector, DWposeDetector
import os
import cv2
import numpy as np
from PIL import Image
from moviepy.editor import *
import argparse
import torch
import re
def main(
input_path="vid2pose/sample_videos/input_video.mp4",
output_path="./outputs/",
pose_model="dwpose",
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if pose_model.__contains__("openpose"):
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
else:
dwpose = DWposeDetector(
det_config=os.path.dirname(__file__)
+ "/yolox_l_8xb8-300e_coco.py",
pose_config=os.path.dirname(__file__)
+ "/dwpose-l_384x288.py",
device=device,
)
def regex(string):
return re.findall(r"\d+", str(string))[-1]
def get_frames(video_in):
frames = []
# resize the video
clip = VideoFileClip(video_in)
# check fps
video_path = os.path.join(output_path, "video_resized.mp4")
if clip.fps > 30:
print("vide rate is over 30, resetting to 30")
clip_resized = clip.resize(height=512)
clip_resized.write_videofile(video_path, fps=30)
else:
print("video rate is OK")
clip_resized = clip.resize(height=512)
clip_resized.write_videofile(video_path, fps=clip.fps)
print("video resized to 512 height")
# Opens the Video file with CV2
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i = 0
while cap.isOpened():
ret, frame = cap.read()
if ret == False:
break
path = os.path.join(output_path, "raw" + str(i) + ".jpg")
cv2.imwrite(path, frame)
frames.append(path)
i += 1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def get_openpose_filter(i):
image = Image.open(i)
# image = np.array(image)
openpose.to(device)
if pose_model.__contains__("full"):
image = openpose(image, include_hand=True, include_face=True)
elif pose_model.__contains__("hand"):
image = openpose(image, include_hand=True)
elif pose_model.__contains__("face"):
image = openpose(image, include_face=True)
elif pose_model.__contains__("openpose"):
image = openpose(image)
else:
image = dwpose(image)
# image = Image.fromarray(image)
path = os.path.join(output_path, "openpose_frame_" + regex(i) + ".jpeg")
image.save(path)
return path
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
path = os.path.join(output_path, type + "_result.mp4")
clip.write_videofile(path, fps=fps)
return path
def convertG2V(imported_gif):
clip = VideoFileClip(imported_gif.name)
path = os.path.join(output_path, "my_gif_video.mp4")
clip.write_videofile(path)
return path
def infer(video_in):
# 1. break video into frames and get FPS
break_vid = get_frames(video_in)
frames_list = break_vid[0]
fps = break_vid[1]
# n_frame = int(trim_value*fps)
n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for i in frames_list[0 : int(n_frame)]:
openpose_frame = get_openpose_filter(i)
result_frames.append(openpose_frame)
print("frame " + i + "/" + str(n_frame) + ": done;")
final_vid = create_video(result_frames, fps, "openpose")
files = [final_vid]
return final_vid, files
title = """
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
"
>
<h1 style="font-weight: 600; margin-bottom: 7px;">
Video to OpenPose
</h1>
</div>
</div>
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
video_input = gr.Video(
source="upload",
type="filepath",
value=input_path if not input_path.endswith(".gif") else None,
)
gif_input = gr.File(
label="import a GIF instead",
file_types=[".gif"],
value=input_path if input_path.endswith(".gif") else None,
)
gif_input.change(
fn=convertG2V, inputs=gif_input, outputs=video_input
)
submit_btn = gr.Button("Submit")
with gr.Column():
video_output = gr.Video()
file_output = gr.Files()
submit_btn.click(
fn=infer, inputs=[video_input], outputs=[video_output, file_output]
)
demo.launch()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-i", "--input_path", type=str, default="vid2pose/sample_videos/input_video.mp4"
)
parser.add_argument("-o", "--output_path", type=str, default="./outputs/")
parser.add_argument("--pose_model", type=str, default="dwpose")
args = parser.parse_args()
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
main(args.input_path, args.output_path, args.pose_model)