-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patharguments.py
122 lines (119 loc) · 7.91 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Additionally modified by Suchen for HOI detector
import argparse
def get_args_parser():
parser = argparse.ArgumentParser('Set Human-Object Interaction Detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--lr_drop', default=120, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model Setting
parser.add_argument('--clip_model', default="ViT-B/16", type=str,
help="Name of pretrained CLIP model")
# parser.add_argument('--frozen_weights', type=str, default=None,)
# * Vision
parser.add_argument('--embed_dim', default=512, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--image_resolution', default=224, type=int,
help="input image resolution to the vision transformer")
parser.add_argument('--vision_layers', default=12, type=int,
help="number of layers in vision transformer")
parser.add_argument('--vision_width', default=768, type=int,
help="feature channels in vision transformer")
parser.add_argument('--vision_patch_size', default=16, type=int,
help="patch size: the input image is divided into multiple patches")
parser.add_argument('--hoi_token_length', default=5, type=int,
help="number of [HOI] tokens added to transformer's input")
# * Text
parser.add_argument('--context_length', default=77, type=int,
help="Maximum length of the text description")
parser.add_argument('--vocab_size', default=49408, type=int,
help="Vocabulary size pre-trained with text encoder")
parser.add_argument('--transformer_width', default=512, type=int,
help="feature channels in text tranformer")
parser.add_argument('--transformer_heads', default=8, type=int,
help="number of multi-attention heads in text transformer")
parser.add_argument('--transformer_layers', default=12, type=int,
help="number of layers in text transformer")
parser.add_argument('--prefix_length', default=8, type=int,
help="number of [PREFIX] tokens at the beginning of sentences")
parser.add_argument('--conjun_length', default=2, type=int,
help="number of [CONJUN] tokens between actions and objects")
# * Bounding box head
parser.add_argument('--enable_dec', action='store_true', help='enable decoders')
parser.add_argument('--dec_heads', default=8, type=int,
help="Number of multi-head attention")
parser.add_argument('--dec_layers', default=4, type=int,
help="Number of layers in the bounding box head")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=5, type=float,
help="class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
parser.add_argument('--set_cost_conf', default=10, type=float,
help="box confidence score coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--class_loss_coef', default=5, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--conf_loss_coef', default=10, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="relative classification weight of the no-object class")
# * Learning rate schedule parameters
parser.add_argument('--sched', default='warmupcos', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "step", options:"step", "warmupcos"')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-7, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup-epochs', type=int, default=0, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Dataset parameters
parser.add_argument('--dataset_file', default='swig', choices=['hico', 'swig'])
parser.add_argument('--repeat_factor_sampling', default=False, type=lambda x: (str(x).lower() == 'true'),
help='apply repeat factor sampling to increase the rate at which tail categories are observed')
parser.add_argument('--zero_shot_exp', default=True, type=lambda x: (str(x).lower() == 'true'),
help='[specific for hico], treat 120 rare interactions as zero shot')
parser.add_argument('--ignore_non_interaction', default=True, type=lambda x: (str(x).lower() == 'true'),
help='[specific for hico], ignore <non_interaction> category')
# Inference
parser.add_argument('--test_score_thresh', default=0.01, type=float,
help="threshold to filter out HOI predictions")
parser.add_argument('--eval_size', default=448, type=int, help="image resolution for evaluation")
parser.add_argument('--vis_outputs', action='store_true', help='visualize the model outputs')
parser.add_argument('--vis_dir', default='', help='path where to save visualization results')
# Training setup
parser.add_argument('--eval', action='store_true')
parser.add_argument('--seed', default=22, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--pretrained', default='', help='path to checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
# * Log and Device
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
# * Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--local_rank', help='url used to set up distributed training')
parser.add_argument('--num_workers', default=2, type=int)
return parser