-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
169 lines (141 loc) · 4.96 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import glob
import argparse
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils import data
from generate_keypoints import process_video
from models import Transformer
from configs import TransformerConfig
from utils import load_json, load_label_map
import shutil
parser = argparse.ArgumentParser(description="Evaluate function")
parser.add_argument("--data_dir", required=True, help="data directory")
args = parser.parse_args()
class KeypointsDataset(data.Dataset):
def __init__(
self,
keypoints_dir,
max_frame_len=200,
frame_length=1080,
frame_width=1920,
):
self.files = sorted(glob.glob(os.path.join(keypoints_dir, "*.json")))
self.max_frame_len = max_frame_len
self.frame_length = frame_length
self.frame_width = frame_width
def interpolate(self, arr):
arr_x = arr[:, :, 0]
arr_x = pd.DataFrame(arr_x)
arr_x = arr_x.interpolate(method="linear", limit_direction="both").to_numpy()
arr_y = arr[:, :, 1]
arr_y = pd.DataFrame(arr_y)
arr_y = arr_y.interpolate(method="linear", limit_direction="both").to_numpy()
if np.count_nonzero(~np.isnan(arr_x)) == 0:
arr_x = np.zeros(arr_x.shape)
if np.count_nonzero(~np.isnan(arr_y)) == 0:
arr_y = np.zeros(arr_y.shape)
arr_x = arr_x * self.frame_width
arr_y = arr_y * self.frame_length
return np.stack([arr_x, arr_y], axis=-1)
def combine_xy(self, x, y):
x, y = np.array(x), np.array(y)
_, length = x.shape
x = x.reshape((-1, length, 1))
y = y.reshape((-1, length, 1))
return np.concatenate((x, y), -1).astype(np.float32)
def __getitem__(self, idx):
file_path = self.files[idx]
row = pd.read_json(file_path, typ="series")
label = row.label
label = "".join([i for i in label if i.isalpha()]).lower()
pose = self.combine_xy(row.pose_x, row.pose_y)
h1 = self.combine_xy(row.hand1_x, row.hand1_y)
h2 = self.combine_xy(row.hand2_x, row.hand2_y)
pose = self.interpolate(pose)
h1 = self.interpolate(h1)
h2 = self.interpolate(h2)
df = pd.DataFrame.from_dict(
{
"uid": row.uid,
"pose": pose.tolist(),
"hand1": h1.tolist(),
"hand2": h2.tolist(),
"label": label,
}
)
pose = (
np.array(list(map(np.array, df.pose.values)))
.reshape(-1, 50)
.astype(np.float32)
)
h1 = (
np.array(list(map(np.array, df.hand1.values)))
.reshape(-1, 42)
.astype(np.float32)
)
h2 = (
np.array(list(map(np.array, df.hand2.values)))
.reshape(-1, 42)
.astype(np.float32)
)
final_data = np.concatenate((pose, h1, h2), -1)
final_data = np.pad(
final_data,
((0, self.max_frame_len - final_data.shape[0]), (0, 0)),
"constant",
)
return {
"uid": row.uid,
"data": torch.FloatTensor(final_data),
}
def __len__(self):
return len(self.files)
@torch.no_grad()
def inference(dataloader, model, device, label_map):
model.eval()
predictions = []
for batch in tqdm(dataloader, desc="Eval"):
input_data = batch["data"].to(device)
output = model(input_data).detach().cpu()
output = torch.argmax(torch.softmax(output, dim=-1), dim=-1).numpy()
predictions.append({"uid": batch["uid"][0], "predicted_label": label_map[output[0]]})
return predictions
video_paths = glob.glob(os.path.join(args.data_dir, "*"))
save_dir = "keypoints_dir"
if os.path.isdir(save_dir):
shutil.rmtree(save_dir)
os.mkdir(save_dir)
for path in tqdm(video_paths, desc="Processing Videos"):
process_video(path, save_dir)
label_map = load_label_map("include")
dataset = KeypointsDataset(
keypoints_dir=save_dir,
max_frame_len=169,
)
dataloader = data.DataLoader(
dataset,
batch_size=1,
shuffle=False,
num_workers=4,
pin_memory=True,
)
label_map = dict(zip(label_map.values(), label_map.keys()))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = TransformerConfig(size="large", max_position_embeddings=256)
model = Transformer(config=config, n_classes=263)
model = model.to(device)
pretrained_model_name = "include_no_cnn_transformer_large.pth"
pretrained_model_links = load_json("pretrained_links.json")
if not os.path.isfile(pretrained_model_name):
link = pretrained_model_links[pretrained_model_name]
torch.hub.download_url_to_file(link, pretrained_model_name, progress=True)
ckpt = torch.load(pretrained_model_name)
model.load_state_dict(ckpt["model"])
print("### Model loaded ###")
preds = inference(dataloader, model, device, label_map)
print(json.dumps(preds, indent=2))