conda create --name g_retriever python=3.9 -y
conda activate g_retriever
# https://pytorch.org/get-started/locally/
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
python -c "import torch; print(torch.__version__)"
python -c "import torch; print(torch.version.cuda)"
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.1+cu118.html
pip install -r requirements.txt
python inference_large_graph.py --graph_path dataset/knowledge_graphs/attention_is_all_you_need_kg_expanded.csv --question "Can you tell me other works of Ashish Vaswani?" --openai_api_key "" --output_path "outputs/results.json"
python inference_large_graph.py --graph_path "dataset/knowledge_graphs/attention_is_all_you_need_kg_expanded.csv" --question "What are the main concepts of the attention is all you need paper? Explain in detail." --openai_api_key "" --vector_db_path "vectorDB" --vector_db_collection "RAG-Docs" --output_path "outputs/results.json"
Add pds needed to the dataset/pdfs folder and run the below command to populate the vectorDB.
python -m src.utils.load_vector_db --pdf_dir "dataset/pdfs" --persist_dir "vectorDB" --openai_api_key "" --collection_name "RAG-Docs" --chunk_size 1000 --chunk_overlap 200