-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
31 lines (24 loc) · 919 Bytes
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import cv2
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as F
import matplotlib.pyplot as plt
def load_images(image_files):
loaded_images = []
for file in image_files:
x = cv2.cvtColor(cv2.imread(file), cv2.COLOR_RGBA2RGB)
x = np.clip(np.asarray(x, dtype=float)/255, 0, 1)
# x = np.clip(np.asarray(Image.open( file ), dtype=float) / 255, 0, 1)
loaded_images.append(x)
return np.stack(loaded_images, axis=0)
def my_DepthNorm(x, maxDepth):
return maxDepth / x
def my_predict(model, images, minDepth=10, maxDepth=1000):
with torch.no_grad():
# Compute predictions
predictions = model(images)
# Put in expected range
return np.clip(my_DepthNorm(predictions.numpy(), maxDepth=maxDepth), minDepth, maxDepth) / maxDepth