-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstale_pretrain_base_v2.py
179 lines (144 loc) · 6.86 KB
/
stale_pretrain_base_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim as optim
from torch import autograd
import numpy as np
from stale_model_pretrain import STALE
import yaml
import stale_lib.stale_dataloader_base_pretrain as stale_dataset
from stale_lib.loss_stale import stale_loss
from config.dataset_class import activity_dict
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
with open("./config/anet_2gpu.yaml", 'r', encoding='utf-8') as f:
tmp = f.read()
config = yaml.load(tmp, Loader=yaml.FullLoader)
output_path=config['dataset']['training']['output_path']
num_gpu = config['training']['num_gpu']
batch_size = config['training']['batch_size']
learning_rate = config['training']['learning_rate']
decay = config['training']['weight_decay']
epoch = config['training']['max_epoch']
num_batch = config['training']['batch_size']
step_train = config['training']['step']
gamma_train = config['training']['gamma']
fix_seed = config['training']['random_seed']
pretrain_mode = config['model']['clip_pretrain']
################## fix everything ##################
import random
seed = fix_seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#######################################################
# reduce_feat = nn.Conv1d(2048, 1024, 1)
def get_mem_usage():
GB = 1024.0 ** 3
output = ["device_%d = %.03fGB" % (device, torch.cuda.max_memory_allocated(torch.device('cuda:%d' % device)) / GB) for device in range(num_gpu)]
return ' '.join(output)[:-1]
def convert_models_to_fp32(model):
for p in model.parameters():
p.data = p.data.float()
if p.grad is not None:
p.grad.data = p.grad.data.float()
def convert_models_to_fp16(model):
print(model)
for p in model.parameters():
p.data = p.data.half()
p.grad.data = p.grad.data.half()
def convert_weights(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
# training-CLIP
# encoder,vid_feat,context,pretrained,cont_length,
def train(data_loader, model, optimizer, epoch,scheduler):
model.train()
for n_iter, (input_data, top_br_gt, bottom_br_gt, action_gt, label_gt, bot_gt) in enumerate(data_loader):
top_br_pred, bottom_br_pred , mask_pred, class_pred, features = model(input_data.cuda(),"train")
loss = stale_loss(top_br_gt,top_br_pred,bottom_br_gt,bottom_br_pred,action_gt, mask_pred,bot_gt,class_pred,label_gt, features, "train")
tot_loss = loss[0]
optimizer.zero_grad()
tot_loss.backward()
optimizer.step()
writer.add_scalar("Total_Loss-train", loss[0], epoch)
writer.add_scalar("Top_Branch_Loss-train", loss[1], epoch)
writer.add_scalar("Bottom_Branch_Loss-train", loss[2], epoch)
writer.add_scalar("Mask_Loss-train", loss[3], epoch)
print("[Epoch {0:03d}] Total-Loss {1:.2f} = T-Loss {2:.2f} + B-Loss {3:.2f} + M-Loss {4:.2f} (train)".format(
epoch, tot_loss,loss[1],loss[2],loss[3]))
# validation
def test(data_loader, model, epoch, best_loss):
model.eval()
with torch.no_grad():
for n_iter, (input_data, top_br_gt, bottom_br_gt, action_gt, label_gt,bot_gt) in enumerate(data_loader):
top_br_pred, bottom_br_pred, mask_pred, class_pred, features = model(input_data.cuda(),"test")
loss = stale_loss(top_br_gt,top_br_pred,bottom_br_gt,bottom_br_pred,action_gt, mask_pred, bot_gt, class_pred,label_gt, features, "test")
tot_loss = loss[0]
writer.add_scalar("Total_Loss-test", loss[0], epoch)
writer.add_scalar("Top_Branch_Loss-test", loss[1], epoch)
writer.add_scalar("Bottom_Branch_Loss-test", loss[2], epoch)
writer.add_scalar("Mask_Loss-test", loss[3], epoch)
print("[Epoch {0:03d}] Total-Loss {1:.2f} = T-Loss {2:.2f} + B-Loss {3:.2f} + M-Loss {4:.2f} (val)".format(
epoch, tot_loss,loss[1],loss[2],loss[3]))
state = {'epoch': epoch + 1,
'state_dict': model.state_dict()}
torch.save(state, output_path + "/STALE_base_checkpoint.pth.tar")
if tot_loss < best_loss:
best_loss = tot_loss
torch.save(state, output_path + "/STALE_base_best.pth.tar")
return best_loss
if __name__ == '__main__':
if not os.path.exists(output_path):
os.makedirs(output_path)
model = STALE()
model = torch.nn.DataParallel(model, device_ids=list(range(num_gpu))).cuda()
for param in model.parameters():
param.requires_grad = True
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("\nTotal Number of Learnable Paramters (in M) : ",total_params/1000000)
print('No of Gpus using to Train : {} '.format(num_gpu))
print(" Saving all Checkpoints in path : "+ output_path )
optimizer = optim.Adam(model.parameters(), lr=learning_rate,
weight_decay=decay)
train_loader = torch.utils.data.DataLoader(stale_dataset.STALEDataset(subset="train"),
batch_size=num_batch, shuffle=True,
num_workers=18, pin_memory=False)
test_loader = torch.utils.data.DataLoader(stale_dataset.STALEDataset(subset="validation"),
batch_size=num_batch, shuffle=False,
num_workers=18, pin_memory=False)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_train, gamma=gamma_train)
best_loss = 1e10
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
for epoch in range(epoch):
with autograd.detect_anomaly():
train(train_loader, model, optimizer, epoch,scheduler)
best_loss = test(test_loader, model, epoch, best_loss)
scheduler.step()
writer.flush()
end.record()
torch.cuda.synchronize()
print("Total Time taken for Running "+str(epoch)+" epoch is :"+ str(start.elapsed_time(end)/1000) + " secs") # milliseconds