-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_saved.py
78 lines (60 loc) · 2.19 KB
/
run_saved.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import gym
import numpy as np
import torch
# noinspection PyUnresolvedReferences
from hrl_pybullet_envs import AntGatherBulletEnv
import flagrun
# noinspection PyUnresolvedReferences
from flagrun import PrimFF
from src.core.policy import Policy
def run_saved_policy(policy_path: str, env: gym.Env, steps: int):
run_saved(Policy.load(policy_path).pheno(), env, steps)
def run_saved_pytorch(policy_path: str, env: gym.Env, steps: int):
run_saved(torch.load(policy_path), env, steps)
def run_saved(model: torch.nn.Module, env, steps):
while True:
r, d, _, s = flagrun.run_model(model, env, steps, render=True)
print(f'\n\nrewards {np.sum(r)}\ndist {np.linalg.norm(np.array(d[-3:-1]))}\n\n')
if __name__ == '__main__':
gym.logger.set_level(40)
parser = argparse.ArgumentParser()
parser.add_argument('env')
parser.add_argument('pickle_file')
parser.add_argument('--record', dest='record', action='store_true')
parser.set_defaults(record=False)
args = parser.parse_args()
# # noinspection PyUnresolvedReferences
# import pybullet_envs
timeout = 200
world_size = 10
enclosed = True
tolerance = 1
steps = 1000
max_target_dist = 4
max_targets = 0
switch_flag_on_collision = False
use_sensor = False
e = gym.make(args.env,
enclosed=enclosed,
timeout=timeout,
size=world_size,
tolerance=tolerance,
max_target_dist=max_target_dist,
max_targets=max_targets,
switch_flag_on_collision=switch_flag_on_collision,
use_sensor=use_sensor,
debug=False).unwrapped
e.mpi_common_rand = np.random.RandomState()
AntGatherBulletEnv.ant_env_rew_weight = 1
AntGatherBulletEnv.path_rew_weight = 0
AntGatherBulletEnv.dist_rew_weight = 0
e.render('human')
e.reset()
if args.record:
e.scene._p.startStateLogging(e.scene._p.STATE_LOGGING_VIDEO_MP4, '~/Documents/es/testvid.mp4')
if args.pickle_file.endswith('.pt'):
run_saved_pytorch(args.pickle_file, e, steps)
else:
run_saved_policy(args.pickle_file, e, steps)
e.close()