diff --git a/StoneDuality/Boolean.lean b/StoneDuality/Boolean.lean index 4d4fdad..b92a900 100644 --- a/StoneDuality/Boolean.lean +++ b/StoneDuality/Boolean.lean @@ -569,7 +569,7 @@ lemma top_sup_prime {I : Type} (F : Finset I) (f : I → Prop) : exact id (Iff.symm h) have insert : ∀ a : I, ∀ t : Finset I, a ∉ t → p t → p (insert a t) := by - intro a t h hpt + intro a t _ hpt by_cases h : f a · simp [p] @@ -583,14 +583,8 @@ lemma top_sup_prime {I : Type} (F : Finset I) (f : I → Prop) : apply Or.inr have h' : Finset.sup t f := or_cancel_left (of_iff_true hi) h - -- have _ : Finset.sup t f = ⊤ → ∃ i ∈ t, f i = ⊤ := by - -- exact p t -- fails, I cannot get inside of Prop... - - have _ : ∃ i ∈ t, f i = ⊤ := by - -- let u := p t (iff_true_intro h') -- the same here - sorry - - sorry + simp [p] at hpt + exact hpt (iff_true_intro h') exact Finset.induction_on F empty insert