-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcamera.py
88 lines (69 loc) · 2.54 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import time
import numpy as np
import torch
import torchvision
from torchvision import transforms
import cv2
from models.pfld import PFLDInference, AuxiliaryNet
from mtcnn.detector import detect_faces, show_bboxes
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args):
checkpoint = torch.load(args.model_path, map_location=device)
plfd_backbone = PFLDInference().to(device)
plfd_backbone.load_state_dict(checkpoint['plfd_backbone'])
plfd_backbone.eval()
plfd_backbone = plfd_backbone.to(device)
transform = transforms.Compose([transforms.ToTensor()])
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
if not ret: break
height, width = img.shape[:2]
bounding_boxes, landmarks = detect_faces(img)
for box in bounding_boxes:
score = box[4]
x1, y1, x2, y2 = (box[:4]+0.5).astype(np.int32)
w = x2 - x1 + 1
h = y2 - y1 + 1
size = int(max([w, h])*1.1)
cx = x1 + w//2
cy = y1 + h//2
x1 = cx - size//2
x2 = x1 + size
y1 = cy - size//2
y2 = y1 + size
dx = max(0, -x1)
dy = max(0, -y1)
x1 = max(0, x1)
y1 = max(0, y1)
edx = max(0, x2 - width)
edy = max(0, y2 - height)
x2 = min(width, x2)
y2 = min(height, y2)
cropped = img[y1:y2, x1:x2]
if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx, cv2.BORDER_CONSTANT, 0)
cropped = cv2.resize(cropped, (112, 112))
input = cv2.resize(cropped, (112, 112))
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
input = transform(input).unsqueeze(0).to(device)
_, landmarks = plfd_backbone(input)
pre_landmark = landmarks[0]
pre_landmark = pre_landmark.cpu().detach().numpy().reshape(-1, 2) * [size, size]
for (x, y) in pre_landmark.astype(np.int32):
cv2.circle(img, (x1 + x, y1 + y), 1, (0, 0, 255))
cv2.imshow('0', img)
if cv2.waitKey(10) == 27:
break
def parse_args():
parser = argparse.ArgumentParser(description='Testing')
parser.add_argument(
'--model_path',
default="./checkpoint/pfld_weight.pth.tar",
type=str)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)