-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
312 lines (266 loc) · 8.82 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#include "materials.hpp"
#include "timer.hpp"
#include "enoki.hpp"
#include <omp.h>
#include <random>
#include <iostream>
namespace compiler {
static void please_dont_optimize_away([[maybe_unused]] void* p) { asm volatile("" : : "g"(p) : "memory"); }
}
double random_real() {
static std::default_random_engine generator;
static std::uniform_real_distribution<double> distribution(-1.0, 1.0);
return distribution(generator);
}
void neohookean_test(int n, int num_runs) {
timer stopwatch;
std::vector < NeohookeanMaterialData > data(n);
std::cout << "NeoHookean model comparison test" << std::endl;
std::cout << " generating input data ... " << std::endl;
for (int i = 0; i < n; i++) {
for (int j = 0; j < BLOCK_SIZE; j++) {
data[i].lambda[j] = 100.0 + 20.0 * random_real();
data[i].mu[j] = 100.0 + 20.0 * random_real();
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
data[i].deformation_gradient[row][col][j] = (row == col) + 0.1 * random_real();
}
}
}
}
std::cout << " naive implementation: ";
stopwatch.start();
for (int k = 0; k < num_runs; k++) {
for (int i = 0; i < n; i++) {
neohookean_model_scalar(data[i]);
}
compiler::please_dont_optimize_away(&data);
}
stopwatch.stop();
std::cout << stopwatch.elapsed() / num_runs << "s per run" << std::endl;
std::vector < double > answers(n * 9 * BLOCK_SIZE);
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < BLOCK_SIZE; j++) {
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
answers[count++] = data[i].stress[row][col][j];
}
}
}
}
std::cout << " omp simd implementation: ";
stopwatch.start();
for (int k = 0; k < num_runs; k++) {
#pragma omp for simd
for (int i = 0; i < n; i++) {
neohookean_model_scalar(data[i]);
}
compiler::please_dont_optimize_away(&data);
}
stopwatch.stop();
std::cout << stopwatch.elapsed() / num_runs << "s per run" << std::endl;
double norm = 0.0;
double error = 0.0;
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < BLOCK_SIZE; j++) {
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
double value = data[i].stress[row][col][j];
double diff = answers[count++] - value;
norm += value * value;
error += diff * diff;
}
}
}
}
std::cout << "relative frobenius error (stress): " << sqrt(error / norm) << std::endl;
std::cout << std::endl;
std::cout << std::endl;
std::cout << " vectorized implementation: ";
stopwatch.start();
for (int k = 0; k < num_runs; k++) {
for (int i = 0; i < n; i++) {
neohookean_model_simd(data[i]);
}
compiler::please_dont_optimize_away(&data);
}
stopwatch.stop();
std::cout << stopwatch.elapsed() / num_runs << "s per run" << std::endl;
norm = 0.0;
error = 0.0;
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < BLOCK_SIZE; j++) {
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
double value = data[i].stress[row][col][j];
double diff = answers[count++] - value;
norm += value * value;
error += diff * diff;
}
}
}
}
std::cout << "relative frobenius error (stress): " << sqrt(error / norm) << std::endl;
std::cout << std::endl;
std::cout << std::endl;
}
void J2_plasticity_test(int n, int num_runs) {
timer stopwatch;
std::vector < J2MaterialData > data(n);
std::cout << "J2 plasticity model comparison test" << std::endl;
std::cout << " generating input data ... " << std::endl;
for (int i = 0; i < n; i++) {
for (int j = 0; j < BLOCK_SIZE; j++) {
data[i].K[j] = 100.0 + 20.0 * random_real();
data[i].mu[j] = 100.0 + 20.0 * random_real();
data[i].sigma_y[j] = 0.1;
data[i].alpha[j] = 1.0 + random_real();
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
data[i].F_old[row][col][j] = (row == col) + 0.1 * random_real();
data[i].F_new[row][col][j] = (row == col) + 0.1 * random_real();
double value = 0.1 * random_real();
data[i].be_bar[row][col][j] = value;
data[i].be_bar[col][row][j] = value;
}
}
}
}
std::vector < J2MaterialData > data_copy = data;
std::cout << " naive J2 implementation: ";
stopwatch.start();
for (int k = 0; k < num_runs; k++) {
#pragma omp simd
for (int i = 0; i < n; i++) {
J2_plasticity_model_scalar(data[i]);
}
compiler::please_dont_optimize_away(&data);
}
stopwatch.stop();
std::cout << stopwatch.elapsed() / num_runs << "s per run" << std::endl;
std::vector < double > F_old(n * 9 * BLOCK_SIZE);
std::vector < double > be_bar(n * 9 * BLOCK_SIZE);
std::vector < double > alpha(n * BLOCK_SIZE);
std::vector < double > tau(n * 9 * BLOCK_SIZE);
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < BLOCK_SIZE; j++) {
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
F_old[count] = data[i].F_old[row][col][j];
be_bar[count] = data[i].be_bar[row][col][j];
tau[count] = data[i].tau[row][col][j];
count++;
}
}
alpha[i * BLOCK_SIZE + j] = data[i].alpha[j];
}
}
data = data_copy;
std::cout << " vectorized J2 implementation: ";
stopwatch.start();
for (int k = 0; k < num_runs; k++) {
for (int i = 0; i < n; i++) {
J2_plasticity_model_simd(data[i]);
}
compiler::please_dont_optimize_away(&data);
}
stopwatch.stop();
std::cout << stopwatch.elapsed() / num_runs << "s per run" << std::endl;
double norm[4] = {};
double error[4] = {};
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < BLOCK_SIZE; j++) {
for (int row = 0; row < 3; row++) {
for (int col = 0; col < 3; col++) {
{
double value = data[i].F_old[row][col][j];
double diff = F_old[count] - value;
norm[0] += value * value;
error[0] += diff * diff;
}
{
double value = data[i].be_bar[row][col][j];
double diff = be_bar[count] - value;
norm[1] += value * value;
error[1] += diff * diff;
}
{
double value = data[i].tau[row][col][j];
double diff = tau[count] - value;
norm[2] += value * value;
error[2] += diff * diff;
}
count++;
}
}
double value = data[i].alpha[j];
double diff = alpha[i * BLOCK_SIZE + j] - value;
norm[3] += value * value;
error[3] += diff * diff;
}
}
std::cout << "relative frobenius error (F): " << sqrt(error[0] / norm[0]) << std::endl;
std::cout << "relative frobenius error (be_bar): " << sqrt(error[1] / norm[1]) << std::endl;
std::cout << "relative frobenius error (tau): " << sqrt(error[2] / norm[2]) << std::endl;
std::cout << "relative frobenius error (alpha): " << sqrt(error[3] / norm[3]) << std::endl;
std::cout << std::endl;
std::cout << std::endl;
}
void axpy(std::vector< double > & z, double a, const std::vector< double > & x,
std::vector< double > & y) {
for (int i = 0; i < x.size(); i++) {
z[i] = a * x[i] + y[i];
}
}
void axpy_SIMD(std::vector< double > & z, double a, const std::vector< double > & x,
std::vector< double > & y) {
for (int i = 0; i < x.size(); i += SIMD_SIZE) {
vdouble vx = enoki::load_unaligned<vdouble>(x.data() + i);
vdouble vy = enoki::load_unaligned<vdouble>(y.data() + i);
enoki::store_unaligned(z.data() + i, a * vx + vy);
}
}
void axpy_test() {
timer stopwatch;
int n = 1 << 22;
int num_runs = 16;
std::vector < double > x(n);
std::vector < double > y(n);
std::vector < double > z(n);
std::vector < double > expected(n);
std::cout << "axpy comparison test" << std::endl;
std::cout << " generating input data ... " << std::endl;
for (int i = 0; i < n; i++) {
x[i] = random_real();
y[i] = random_real();
expected[i] = 2.0 * x[i] + y[i];
}
std::cout << " original axpy implementation: ";
stopwatch.start();
for (int k = 0; k < num_runs; k++) {
axpy(z, 2.0, x, y);
compiler::please_dont_optimize_away(&z);
}
stopwatch.stop();
std::cout << stopwatch.elapsed() / num_runs << "s per run" << std::endl;
std::cout << " SIMD axpy implementation: ";
stopwatch.start();
for (int k = 0; k < num_runs; k++) {
axpy_SIMD(z, 2.0, x, y);
compiler::please_dont_optimize_away(&z);
}
stopwatch.stop();
std::cout << stopwatch.elapsed() / num_runs << "s per run" << std::endl;
}
int main() {
int n = 100'000;
int num_runs = 10;
neohookean_test(n, num_runs);
J2_plasticity_test(n, num_runs);
axpy_test();
}