Skip to content

Latest commit

 

History

History
127 lines (108 loc) · 3.84 KB

README.md

File metadata and controls

127 lines (108 loc) · 3.84 KB

NIA

NIA is a python package for Nature Inspired Optimization Algorithms which makes optimization process easy and fast.

Instalation

Check NIA's PyPI page or simply install it using pip:

pip install nia

Usage

Solve Ackley problem using Genetic Algorithm:

from nia.algorithms import GeneticAlgorithm
from nia.problems import ackley


nia = GeneticAlgorithm(cost_function=ackley,
                       lower_bond=[-5,-5],
                       upper_bond=[5,5],
                                )
nia.run()
print(nia.message);

output:

quit criteria reached best answer is: [-0.02618036 -0.03615453] and best fitness is: 0.0006327163637145361 iteration : 11

Plot:

Result gif

Customization:

from nia.algorithms import GeneticAlgorithm
# Specific selection, crossover and muttion algorithms are available under related sub-packages.
from nia.selections import Tournament
from nia.crossovers import RandomSBX
from nia.mutations import Uniform
import numpy as np

def ackley(X):
    x = X[0]
    y = X[1]
    return -20 * np.exp(-0.2 * np.sqrt(0.5 * (x**2 + y**2))) - np.exp(0.5 *
        (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) + np.e + 20

def log(ga):
  print(ga.best)

lower = np.array([-5,-5])
upper = np.array([5,5])

nia = GeneticAlgorithm(cost_function=ackley,
                       iteration_function=log,
                       lower_bond=lower,
                       upper_bond=upper,
                       quit_criteria = 0.0001,
                       num_variable = 2,
                       num_population = 20,
                       max_iteration = 100,
                       crossover = RandomSBX(2),
                       mutation = Uniform(0.05),
                       selection = Tournament(20)
                                )
nia.run()
print(nia.message);

output

max iteration reached best answer so far: [-0.02618036 -0.03615453] with best fitness: 0.1786046633597529 iteration : 99

Supported Algorithms :

  • Genetic algorithm (GeneticAlgorithm)
  • Differential Evolution
  • Evolutionary Programming
  • Artificial Immune System
  • Clonal Selection Algorithm
  • Biogeography-based
  • Symbiotic Organisms Search
  • Ant Colony Optimization
  • Artificial Bee Colony (ArtificialBeeColony)
  • Moth Flame Optimization Algorithm
  • Cuckoo Search
  • Green Herons Optimization Algorithm
  • Bat Algorithm
  • Whale Optimization Algorithm
  • Krill Herd
  • Fish-swarm Algorithm
  • Grey Wolf Optimizer
  • Shuffle frog-leaping Algorithm
  • Cat Swarm Optimization
  • Flower Pollination Algorithm
  • Invasive Weed Optimization
  • Water Cycle Algorithm
  • Teaching–Learning-Based Optimization
  • Particle Swarm Optimization (ParticleSwarmOptimization)
  • Simulated Annealing Algorithm
  • Gravitational Search Algorithm
  • Big Bang - Big Crunch

Supported Selection Operators :

  • Rank (Rank)
  • Tournament (Tournament)

Supported Cross Over Operators :

  • K-Point (KPoint)
  • SBX (SBX)
  • Random SBX (RandomSBX)

Supported Mutation Operators :

  • Uniform (Uniform)