-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathembed_loss.py
40 lines (30 loc) · 1.13 KB
/
embed_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import torch.nn as nn
class MultipleChoiceLoss(nn.Module):
def __init__(self, num_option=5, margin=1, size_average=True):
super(MultipleChoiceLoss, self).__init__()
self.margin = margin
self.num_option = num_option
self.size_average = size_average
# score is N x C
def forward(self, score, target):
N = score.size(0)
C = score.size(1)
assert self.num_option == C
loss = torch.tensor(0.0).cuda()
zero = torch.tensor(0.0).cuda()
cnt = 0
#print(N,C)
for b in range(N):
# loop over incorrect answer, check if correct answer's score larger than a margin
c0 = target[b]
for c in range(C):
if c == c0:
continue
# right class and wrong class should have score difference larger than a margin
# see formula under paper Eq(4)
loss += torch.max(zero, 1.0 + score[b, c] - score[b, c0])
cnt += 1
if cnt == 0:
return loss
return loss / cnt if self.size_average else loss