-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptions.py
56 lines (45 loc) · 2.79 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
'''
What Characterizes Personalities of Graphic Designs? SIGGRAPH 2018
Options
'''
import argparse
import os
class BaseOptions():
def __init__(self):
self.parser = argparse.ArgumentParser()
self.initialized = False
def initialize(self):
self.parser.add_argument('--img_rows', type=int, default=300, help='The height of the design')
self.parser.add_argument('--img_cols', type=int, default=200, help='The width of the design')
self.parser.add_argument('--img_chns', type=int, default=3, help='The number of channel')
self.parser.add_argument('--number_of_personalities', type=int, default=15, help='The number of personality label')
self.parser.add_argument('--feature_output_dim', type=int, default=256,
help='The number of units in the output layer of the design feature network')
self.parser.add_argument('--feature_dropout_rate', default=[-1, -1, 0.5, -1, 0.5, -1, 0.5, 0.5, 0.5],
help='The dropout rate used in the design feature network')
self.parser.add_argument('--feature_w_regularizer', type=float, default=0.005,
help='The weight decay used in the design feature network')
self.parser.add_argument('--batch_norm_flag', type=bool, default=False,
help='Whether use batchnorm in the network')
self.parser.add_argument('--word_intermediate_dim', type=int, default=[64,64],
help='The number of units in the intermediate layers of the semantic embedding network')
self.parser.add_argument('--word_w_regularizer', type=float, default=0.005,
help='The weight decay used in the semantic embedding network')
self.parser.add_argument('--scoring_intermediate_dim', default=[256,128],
help='The number of units in the intermediate layers of the semantic scoring network')
self.parser.add_argument('--scoring_dropout_rate', default=[0.5, 0.5],
help='The dropout rate used in the semantic scoring network')
self.parser.add_argument('--scoring_w_regularizer', type=float, default=0.005,
help='The weight decay used in the semantic scoring network')
self.initialized = True
def parse(self):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
self.opt.word_output_dim=self.opt.word_intermediate_dim[-1]
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
return self.opt