diff --git a/src/sage/rings/polynomial/skew_polynomial_ring_constructor.py b/src/sage/rings/polynomial/skew_polynomial_ring_constructor.py index a89bdd19d52..16cdef5af8d 100644 --- a/src/sage/rings/polynomial/skew_polynomial_ring_constructor.py +++ b/src/sage/rings/polynomial/skew_polynomial_ring_constructor.py @@ -36,10 +36,10 @@ def SkewPolynomialRing(base_ring, base_ring_automorphism=None, names=None, spars Return the globally unique skew polynomial ring with given properties and variable name. - Given a ring `R` and a ring automorphism `\base_ring_automorphism` of `R`, the ring of - skew polynomials `R[X,\base_ring_automorphism]` is the usual abelian group polynomial + Given a ring `R` and a ring automorphism `base_ring_automorphism` of `R`, the ring of + skew polynomials `R[X, base_ring_automorphism]` is the usual abelian group polynomial `R[X]` equipped with the modification multiplication deduced from the - rule `X*a = \base_ring_automorphism(a)*X`. + rule `X*a = base_ring_automorphism(a)*X`. .. SEEALSO:: @@ -70,7 +70,7 @@ def SkewPolynomialRing(base_ring, base_ring_automorphism=None, names=None, spars ``SkewPolynomialRing(base_ring, base_ring_automorphism, names, sparse=False)`` returns a univariate skew polynomial ring over `base_ring` twisted by - `\base_ring_automorphism`. + `base_ring_automorphism`. UNIQUENESS and IMMUTABILITY: @@ -98,7 +98,7 @@ def SkewPolynomialRing(base_ring, base_ring_automorphism=None, names=None, spars SQUARE BRACKETS NOTATION: You can alternatively create a skew polynomial ring over `R` - twisted by `\base_ring_automorphism` by writing ``R['varname', base_ring_automorphism]``. + twisted by `base_ring_automorphism` by writing ``R['varname', base_ring_automorphism]``. EXAMPLES: