diff --git a/src/sage/rings/number_field/order.py b/src/sage/rings/number_field/order.py index 6705c85cf51..b83e2683bae 100644 --- a/src/sage/rings/number_field/order.py +++ b/src/sage/rings/number_field/order.py @@ -2040,7 +2040,7 @@ def absolute_order_from_module_generators(gens, sage: F. = NumberField(x**4+3) sage: F.order([alpha**2], allow_subfield=True) - Order in Number Field in beta with defining polynomial x^2 + 2*x + 13 + Order in Number Field in beta with defining polynomial x^2 + 2*x + 13 with beta = 2*alpha^2 - 1 """ if not gens: raise ValueError("gens must span an order over ZZ") diff --git a/src/sage/rings/qqbar.py b/src/sage/rings/qqbar.py index f93e2563214..77080cc0386 100644 --- a/src/sage/rings/qqbar.py +++ b/src/sage/rings/qqbar.py @@ -2133,18 +2133,18 @@ def number_field_elements_from_algebraics(numbers, minimal=False, same_field=Fal 1.259921049894873? sage: res[2] Ring morphism: - From: Number Field in a with defining polynomial y^3 - 2 + From: Number Field in a with defining polynomial y^3 - 2 with a = 1.259921049894873? To: Algebraic Real Field Defn: a |--> 1.259921049894873? sage: nf,nums,hom = number_field_elements_from_algebraics([2^(1/3),3^(1/5)],embedded=True) sage: nf - Number Field in a with defining polynomial y^15 - 9*y^10 + 21*y^5 - 3 + Number Field in a with defining polynomial y^15 - 9*y^10 + 21*y^5 - 3 with a = 0.6866813218928813? sage: nums [a^10 - 5*a^5 + 2, -a^8 + 4*a^3] sage: hom Ring morphism: - From: Number Field in a with defining polynomial y^15 - 9*y^10 + 21*y^5 - 3 + From: Number Field in a with defining polynomial y^15 - 9*y^10 + 21*y^5 - 3 with a = 0.6866813218928813? To: Algebraic Real Field Defn: a |--> 0.6866813218928813? @@ -2211,7 +2211,7 @@ def number_field_elements_from_algebraics(numbers, minimal=False, same_field=Fal sqrt(2), AA.polynomial_root(x^3-3, RIF(0,3)), 11/9, 1] sage: res = number_field_elements_from_algebraics(my_nums, embedded=True) sage: res[0] - Number Field in a with defining polynomial y^24 - 107010*y^22 - 24*y^21 + ... + 250678447193040618624307096815048024318853254384 + Number Field in a with defining polynomial y^24 - 107010*y^22 - 24*y^21 + ... + 250678447193040618624307096815048024318853254384 with a = -95.5053039433554? """ gen = qq_generator @@ -3760,7 +3760,7 @@ def as_number_field_element(self, minimal=False, embedded=False, prec=53): sage: (nf, elt, hom) = rt.as_number_field_element(embedded=True) sage: nf.coerce_embedding() Generic morphism: - From: Number Field in a with defining polynomial y^3 - 2*y^2 - 31*y - 50 + From: Number Field in a with defining polynomial y^3 - 2*y^2 - 31*y - 50 with a = 7.237653139801104? To: Algebraic Real Field Defn: a -> 7.237653139801104? sage: elt