From 450cdc312f4727cdbe952b0798c3de7635292f45 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 11 Jul 2022 19:57:08 -0700 Subject: [PATCH] src/sage/modular: Fix some errors shown by tox -e rst --- src/sage/modular/btquotients/pautomorphicform.py | 10 +++++----- src/sage/modular/hecke/algebra.py | 4 ++-- src/sage/modular/modform/ring.py | 2 +- .../modular/modform_hecketriangle/abstract_ring.py | 2 +- src/sage/modular/pollack_stevens/modsym.py | 2 +- src/sage/modular/pollack_stevens/sigma0.py | 1 + 6 files changed, 11 insertions(+), 10 deletions(-) diff --git a/src/sage/modular/btquotients/pautomorphicform.py b/src/sage/modular/btquotients/pautomorphicform.py index 10b71899389..ea54c2286ff 100644 --- a/src/sage/modular/btquotients/pautomorphicform.py +++ b/src/sage/modular/btquotients/pautomorphicform.py @@ -672,7 +672,7 @@ def __classcall__(cls, X, k, prec=None, basis_matrix=None, base_field=None): - ``k`` - integer - The weight. It must be even. - ``prec`` - integer (default: None). If specified, the - precision for the coefficient module + precision for the coefficient module - ``basis_matrix`` - a matrix (default: None). @@ -2223,12 +2223,12 @@ def __classcall__(cls, domain, U, prec=None, t=None, R=None, it automatically from ``prec``, ``U`` and the ``overconvergent`` flag. - ``R`` -- (default : None). If specified, coefficient field of the automorphic forms. - If not specified it defaults to the base ring of the distributions ``U``, or to `Q_p` - with the working precision ``prec``. + If not specified it defaults to the base ring of the distributions ``U``, or to `Q_p` + with the working precision ``prec``. - ``overconvergent`` -- Boolean (default = False). If True, will construct overconvergent - `p`-adic automorphic forms. Otherwise it constructs the finite dimensional space of - `p`-adic automorphic forms which is isomorphic to the space of harmonic cocycles. + `p`-adic automorphic forms. Otherwise it constructs the finite dimensional space of + `p`-adic automorphic forms which is isomorphic to the space of harmonic cocycles. EXAMPLES: diff --git a/src/sage/modular/hecke/algebra.py b/src/sage/modular/hecke/algebra.py index e840b306d3e..646f0ecb2cb 100644 --- a/src/sage/modular/hecke/algebra.py +++ b/src/sage/modular/hecke/algebra.py @@ -206,9 +206,9 @@ def __call__(self, x, check=True): - something that can be converted into an element of the underlying matrix space. - In the last case, the parameter ``check'' controls whether or + In the last case, the parameter ``check`` controls whether or not to check that this element really does lie in the - appropriate algebra. At present, setting ``check=True'' raises + appropriate algebra. At present, setting ``check=True`` raises a NotImplementedError unless x is a scalar (or a diagonal matrix). diff --git a/src/sage/modular/modform/ring.py b/src/sage/modular/modform/ring.py index 67b0b236fbb..db1c76ab382 100644 --- a/src/sage/modular/modform/ring.py +++ b/src/sage/modular/modform/ring.py @@ -202,7 +202,7 @@ def __init__(self, group, base_ring=QQ): - ``base_ring`` (ring, default: `\QQ`) -- a base ring, which should be `\QQ`, `\ZZ`, or the integers mod `p` for some prime `p` - TESTS:: + TESTS: Check that :trac:`15037` is fixed:: diff --git a/src/sage/modular/modform_hecketriangle/abstract_ring.py b/src/sage/modular/modform_hecketriangle/abstract_ring.py index ed30e5e7af1..52922f6a1f2 100644 --- a/src/sage/modular/modform_hecketriangle/abstract_ring.py +++ b/src/sage/modular/modform_hecketriangle/abstract_ring.py @@ -52,7 +52,7 @@ def __init__(self, group, base_ring, red_hom, n): - ``group`` -- The Hecke triangle group (default: ``HeckeTriangleGroup(3)``) - - ``base_ring`` -- The base_ring (default: `\Z). + - ``base_ring`` -- The base_ring (default: `\Z`). - ``red_hom`` -- If ``True`` then results of binary operations are considered homogeneous whenever it makes sense (default: ``False``). diff --git a/src/sage/modular/pollack_stevens/modsym.py b/src/sage/modular/pollack_stevens/modsym.py index 7c71fd24a13..1b6b2164b1a 100644 --- a/src/sage/modular/pollack_stevens/modsym.py +++ b/src/sage/modular/pollack_stevens/modsym.py @@ -1283,7 +1283,7 @@ def _lift_to_OMS(self, p, M, new_base_ring, algorithm = 'greenberg'): OUTPUT: - An overconvergent modular symbol whose specialization - equals self up to some Eisenstein error. + equals self up to some Eisenstein error. EXAMPLES:: diff --git a/src/sage/modular/pollack_stevens/sigma0.py b/src/sage/modular/pollack_stevens/sigma0.py index fa2f4ac7d81..88d86a7a06b 100644 --- a/src/sage/modular/pollack_stevens/sigma0.py +++ b/src/sage/modular/pollack_stevens/sigma0.py @@ -9,6 +9,7 @@ Over `\QQ` or `\ZZ`, it is the monoid of matrices `2\times2` matrices `\begin{pmatrix} a & b \\ c & d \end{pmatrix}` such that + - `ad - bc \ne 0`, - `a` is integral and invertible at the primes dividing `N`, - `c` has valuation at least `v_p(N)` for each `p` dividing `N` (but may be