From 2e44aa6a3ea5e4c2dfc281ce82f2a52a90ca60ce Mon Sep 17 00:00:00 2001 From: Frederic HAN Date: Sun, 16 Aug 2020 09:00:51 +0200 Subject: [PATCH] remove optional giacpy_sage from multi_polynomial_ideal --- .../polynomial/multi_polynomial_ideal.py | 20 +++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/src/sage/rings/polynomial/multi_polynomial_ideal.py b/src/sage/rings/polynomial/multi_polynomial_ideal.py index a9b5fbabf99..560bda77839 100644 --- a/src/sage/rings/polynomial/multi_polynomial_ideal.py +++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py @@ -2099,7 +2099,7 @@ def elimination_ideal(self, variables, algorithm=None, *args, **kwds): You can use Giac to compute the elimination ideal:: - sage: I.elimination_ideal([t, s], algorithm="giac") == J # optional - giacpy_sage + sage: I.elimination_ideal([t, s], algorithm="giac") == J ... Running a probabilistic check for the reconstructed Groebner basis... True @@ -2125,7 +2125,7 @@ def elimination_ideal(self, variables, algorithm=None, *args, **kwds): sage: J = I.elimination_ideal([t,s]); J Ideal (y^2 - x*z, x*y - z, x^2 - y) of Multivariate Polynomial Ring in x, y, t, s, z over Algebraic Field - sage: I.elimination_ideal([t, s], algorithm="giac") == J # optional - giacpy_sage + sage: I.elimination_ideal([t, s], algorithm="giac") == J Running a probabilistic check for the reconstructed Groebner basis... True """ @@ -4003,20 +4003,20 @@ def groebner_basis(self, algorithm='', deg_bound=None, mult_bound=None, prot=Fal sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching sage: J = I.change_ring(P.change_ring(order='degrevlex')) - sage: gb = J.groebner_basis('giac') # optional - giacpy_sage, random - sage: gb # optional - giacpy_sage + sage: gb = J.groebner_basis('giac') # random + sage: gb [c^3 - 79/210*c^2 + 1/30*b + 1/70*c, b^2 - 3/5*c^2 - 1/5*b + 1/5*c, b*c + 6/5*c^2 - 1/10*b - 2/5*c, a + 2*b + 2*c - 1] - sage: J.groebner_basis.set_cache(gb) # optional - giacpy_sage + sage: J.groebner_basis.set_cache(gb) sage: ideal(J.transformed_basis()).change_ring(P).interreduced_basis() # testing trac 21884 [a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c] Giac's gbasis over `\QQ` can benefit from a probabilistic lifting and multi threaded operations:: - sage: A9=PolynomialRing(QQ,9,'x') # optional - giacpy_sage - sage: I9=sage.rings.ideal.Katsura(A9) # optional - giacpy_sage - sage: I9.groebner_basis("giac",proba_epsilon=1e-7) # optional - giacpy_sage, long time (3s) + sage: A9=PolynomialRing(QQ,9,'x') + sage: I9=sage.rings.ideal.Katsura(A9) + sage: I9.groebner_basis("giac",proba_epsilon=1e-7) # long time (3s) ...Running a probabilistic check for the reconstructed Groebner basis... Polynomial Sequence with 143 Polynomials in 9 Variables @@ -4259,8 +4259,8 @@ def groebner_basis(self, algorithm='', deg_bound=None, mult_bound=None, prot=Fal sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching sage: J = I.change_ring(P.change_ring(order='degrevlex')) - sage: gb = J.groebner_basis('giac') # optional - giacpy_sage, random - sage: gb # optional - giacpy_sage + sage: gb = J.groebner_basis('giac') # random + sage: gb [c^3 + (-79/210)*c^2 + 1/30*b + 1/70*c, b^2 + (-3/5)*c^2 + (-1/5)*b + 1/5*c, b*c + 6/5*c^2 + (-1/10)*b + (-2/5)*c, a + 2*b + 2*c - 1] sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching