-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathresnet.py
211 lines (157 loc) · 7.96 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import warnings
import keras
import keras_resnet
import keras_resnet.models
from . import retinanet
import tensorflow as tf
# RGSL : AOD - Start
from keras.activations import relu
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from keras.layers import Activation, Dropout, Flatten, Dense, Lambda
import tensorflow as tf
import scipy.misc
# RGSL : AOD - End
resnet_filename = 'ResNet-{}-model.keras.h5'
resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(resnet_filename)
custom_objects = retinanet.custom_objects.copy()
custom_objects.update(keras_resnet.custom_objects)
allowed_backbones = ['resnet50', 'resnet101', 'resnet152']
def download_imagenet(backbone):
validate_backbone(backbone)
backbone = int(backbone.replace('resnet', ''))
filename = resnet_filename.format(backbone)
resource = resnet_resource.format(backbone)
if backbone == 50:
checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319'
elif backbone == 101:
checksum = '05dc86924389e5b401a9ea0348a3213c'
elif backbone == 152:
checksum = '6ee11ef2b135592f8031058820bb9e71'
return keras.applications.imagenet_utils.get_file(
filename,
resource,
cache_subdir='models',
md5_hash=checksum
)
def validate_backbone(backbone):
if backbone not in allowed_backbones:
raise ValueError('Backbone (\'{}\') not in allowed backbones ({}).'.format(backbone, allowed_backbones))
# RGSL : AOD_Net Changes - Start
class AODCustomLayer(keras.layers.Layer):
def call (self, inputs):
print (inputs[0].shape)
#scipy.misc.toimage(inputs[0]).save('dehazed.png')
return inputs[:,:,:,::-1]
class AODCustomLayer_1(keras.layers.Layer):
def call (self, inputs):
out0 = Lambda(lambda x: x - 103.939) (inputs[..., 0])
print ("Outs", out0.shape)
out1 = Lambda(lambda x: x - 116.779) (inputs[..., 1])
print (out1.shape)
out2 = Lambda(lambda x: x - 123.68) (inputs[..., 2])
print (out2.shape)
aod_out_layer = concatenate([out0, out1, out2], axis=-2)
print ("concate layer", aod_out_layer)
print ("Cacate shape", aod_out_layer.shape)
#scipy.misc.toimage(aod_out_layer).save('preprocessed.png')
aod_out_layer = tf.keras.backend.expand_dims(aod_out_layer, 0)
return aod_out_layer
# RGSL : AOD_Net Changes - End
def resnet_retinanet(num_classes, backbone='resnet50', inputs=None, modifier=None, **kwargs):
validate_backbone(backbone)
# choose default input
if inputs is None:
inputs = keras.layers.Input(shape=(None, None, 3))
# create the resnet backbone
if backbone == 'resnet50':
resnet = keras_resnet.models.ResNet50(inputs, include_top=False, freeze_bn=True)
elif backbone == 'resnet101':
resnet = keras_resnet.models.ResNet101(inputs, include_top=False, freeze_bn=True)
elif backbone == 'resnet152':
resnet = keras_resnet.models.ResNet152(inputs, include_top=False, freeze_bn=True)
# RGSL : AOD_Net Changes - Start
aod_inputs = Input(shape=(None,None, 3))
conv1 = Conv2D(3, (1, 1), kernel_initializer='random_normal', activation='relu')(aod_inputs)
conv2 = Conv2D(3, (3, 3), kernel_initializer='random_normal', activation='relu', padding='same')(conv1)
concat1 = concatenate([conv1, conv2], axis=-1)
print ("Shape of the concat", concat1.shape)
conv3 = Conv2D(3, (5, 5), activation='relu', kernel_initializer='truncated_normal', padding='same')(concat1)
concat2 = concatenate([conv2, conv3], axis=-1)
conv4 = Conv2D(3, (7, 7), activation='relu', kernel_initializer='random_normal', padding='same')(concat2)
concat3 = concatenate([conv1, conv2, conv3, conv4], axis=-1)
print ("Just before concat")
K = Conv2D(3, (3, 3), activation='relu', kernel_initializer='truncated_normal', padding='same')(concat3)
product= keras.layers.Multiply()([K, aod_inputs])
sum1 = keras.layers.Subtract()([product, K])
sum2 = Lambda(lambda x: 1+x) (sum1)
#sum2 = keras.layers.Add()([sum1, ones_tensor])
aod_out_layer = Lambda(lambda x: relu(x)) (sum2)
print ("RGSL : After relu ", aod_out_layer._keras_history)
#aod_out_layer = aod_out_layer[:, :, :, -1]
print ("RGSL shape", aod_out_layer.shape)
print ("The dtype :", aod_out_layer.dtype)
print (aod_out_layer[0].shape)
aod_model_1 = keras.models.Model(inputs=aod_inputs, outputs=aod_out_layer)
# print ("RGSL : After reversing ", aod_out_layer._keras_history)
#aod_model = keras.models.Model(inputs=aod_inputs, outputs=aod_out_layer)
#print ("Created the model after reversing")
# print ("RGSL shape", aod_out_layer.shape)
aod_out_layer = Lambda(lambda x: x * 255) (aod_out_layer)
aod_out_layer = AODCustomLayer() (aod_out_layer)
print ("RGSL after cutom layer", aod_out_layer.shape)
aod_out_layer = AODCustomLayer_1() (aod_out_layer)
print ("RGSL : aod output layer:", aod_out_layer)
#print ("Created model before mul")
#aod_model = keras.models.Model(inputs=aod_inputs, outputs=aod_out_layer)
#print ("Created model after mul")
#print ("Creating the model")
##aod_model = Model(inputs=aod_inputs, outputs=aod_out_layer)
#print ("Created the model")
# RGSL : AOD_Net Changes - End
#print ("The dtype :", aod_out_layer.dtype)
# invoke modifier if given
if modifier:
resnet = modifier(resnet)
#print (resnet.summary())
print ("Creating the model")
print ("RGSL : After concat ", aod_out_layer._keras_history)
aod_model = keras.models.Model(inputs=aod_inputs, outputs=aod_out_layer)
print ("Created the model")
print (aod_model.outputs)
# aod_model = Model(inputs=aod_inputs, outputs = aod_out_layer)
aod_model.load_weights ('./snapshots/aod_net.h5')
print ("resnet o/p", resnet.output)
resnet = keras.models.Model(inputs=aod_inputs, outputs = resnet(aod_model.outputs))
print ("after changes resnet o/p", resnet.outputs)
#print (aod_model.summary())
#print (resnet.summary())
# create the full model
return retinanet.retinanet(inputs=resnet.inputs, num_classes=num_classes, backbone_layers=resnet.outputs[1:], **kwargs)
def resnet50_retinanet(num_classes, inputs=None, **kwargs):
return resnet_retinanet(num_classes=num_classes, backbone='resnet50', inputs=inputs, **kwargs)
def resnet101_retinanet(num_classes, inputs=None, **kwargs):
return resnet_retinanet(num_classes=num_classes, backbone='resnet101', inputs=inputs, **kwargs)
def resnet152_retinanet(num_classes, inputs=None, **kwargs):
return resnet_retinanet(num_classes=num_classes, backbone='resnet152', inputs=inputs, **kwargs)
def ResNet50RetinaNet(inputs, num_classes, **kwargs):
warnings.warn("ResNet50RetinaNet is replaced by resnet50_retinanet and will be removed in a future release.")
return resnet50_retinanet(num_classes, inputs, *args, **kwargs)
def ResNet101RetinaNet(inputs, num_classes, **kwargs):
warnings.warn("ResNet101RetinaNet is replaced by resnet101_retinanet and will be removed in a future release.")
return resnet101_retinanet(num_classes, inputs, *args, **kwargs)
def ResNet152RetinaNet(inputs, num_classes, **kwargs):
warnings.warn("ResNet152RetinaNet is replaced by resnet152_retinanet and will be removed in a future release.")
return resnet152_retinanet(num_classes, inputs, *args, **kwargs)