forked from harvardnlp/sent-conv-torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.lua
355 lines (302 loc) · 11.4 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
require 'hdf5'
require 'nn'
require 'optim'
require 'lfs'
require 'model/convNN.lua'
require 'util.lua'
-- Flags
cmd = torch.CmdLine()
cmd:text()
cmd:text()
cmd:text('Convolutional net for sentence classification')
cmd:text()
cmd:text('Options')
cmd:option('-model_type', 'nonstatic', 'Model type. Options: rand (randomly initialized word embeddings), static (pre-trained embeddings from word2vec, static during learning), nonstatic (pre-trained embeddings, tuned during learning), multichannel (two embedding channels, one static and one nonstatic)')
cmd:option('-data', '', 'Training data and word2vec data')
cmd:option('-cudnn', 0, 'Use cudnn and GPUs if set to 1, otherwise set to 0')
cmd:option('-seed', 3435, 'random seed, set -1 for actual random')
cmd:option('-folds', 10, 'number of folds to use. If test set provided, folds=1. max 10')
cmd:option('-debug', 0, 'print debugging info including timing, confusions')
cmd:option('-gpuid', 0, 'GPU device id to use.')
cmd:option('-savefile', '', 'Name of output file, which will hold the trained model, model parameters, and training scores. Default filename is TIMESTAMP_results')
cmd:option('-zero_indexing', 0, 'If data is zero indexed')
cmd:option('-dump_feature_maps_file', '', 'Set file to dump feature maps of convolution')
cmd:text()
-- Preset by preprocessed data
cmd:option('-has_test', 1, 'If data has test, we use it. Otherwise, we use CV on folds')
cmd:option('-has_dev', 1, 'If data has dev, we use it, otherwise we split from train')
cmd:option('-num_classes', 2, 'Number of output classes')
cmd:option('-max_sent', 59, 'maximum sentence length')
cmd:option('-vec_size', 300, 'word2vec vector size')
cmd:option('-vocab_size', 18766, 'Vocab size')
cmd:text()
-- Training own dataset
cmd:option('-train_only', 0, 'Set to 1 to only train on data. Default is cross-validation')
cmd:option('-test_only', 0, 'Set to 1 to only do testing. Must have a -warm_start_model')
cmd:option('-preds_file', '', 'On test data, write predictions to an output file. Set test_only to 1 to use')
cmd:option('-warm_start_model', '', 'Path to .t7 file with pre-trained model. Should contain a table with key \'model\'')
cmd:text()
-- Training hyperparameters
cmd:option('-num_epochs', 25, 'Number of training epochs')
cmd:option('-optim_method', 'adadelta', 'Gradient descent method. Options: adadelta, adam')
cmd:option('-L2s', 3, 'L2 normalize weights')
cmd:option('-batch_size', 50, 'Batch size for training')
cmd:text()
-- Model hyperparameters
cmd:option('-num_feat_maps', 100, 'Number of feature maps after 1st convolution')
cmd:option('-kernels', '{3,4,5}', 'Kernel sizes of convolutions, table format.')
cmd:option('-skip_kernel', 0, 'Use skip kernel')
cmd:option('-dropout_p', 0.5, 'p for dropout')
cmd:option('-highway_mlp', 0, 'Number of highway MLP layers')
cmd:option('-highway_conv_layers', 0, 'Number of highway MLP layers')
cmd:text()
function save_progress(fold_dev_scores, fold_test_scores, best_model, fold, opt)
local savefile
if opt.savefile ~= '' then
savefile = string.format('results/%s_%d.t7', opt.savefile, fold)
else
savefile = string.format('results/%s_model_%d.t7', os.date('%Y%m%d_%H%M'), fold)
end
print('saving checkpoint to ', savefile)
local save = {}
save['dev_scores'] = fold_dev_scores
if opt.train_only == 0 then
save['test_scores'] = fold_test_scores
end
save['opt'] = opt
save['model'] = best_model
save['embeddings'] = get_layer(best_model, 'nn.LookupTable').weight
torch.save(savefile, save)
end
-- build model for training
function build_model(w2v)
local model
if opt.warm_start_model == '' then
model = make_net(w2v, opt)
else
require "nngraph"
if opt.cudnn == 1 then
require "cudnn"
require "cunn"
end
model = torch.load(opt.warm_start_model).model
end
local criterion = nn.ClassNLLCriterion()
-- move to GPU
if opt.cudnn == 1 then
model = model:cuda()
criterion = criterion:cuda()
end
-- get layers
local layers = {}
layers['linear'] = get_layer(model, 'nn.Linear')
layers['w2v'] = get_layer(model, 'nn.LookupTable')
if opt.skip_kernel > 0 then
layers['skip_conv'] = get_layer(model, 'skip_conv')
end
if opt.model_type == 'multichannel' then
layers['chan1'] = get_layer(model, 'channel1')
end
return model, criterion, layers
end
function train_loop(all_train, all_train_label, test, test_label, dev, dev_label, w2v)
-- Initialize objects
local Trainer = require 'trainer'
local trainer = Trainer.new()
local optim_method
if opt.optim_method == 'adadelta' then
optim_method = optim.adadelta
elseif opt.optim_method == 'adam' then
optim_method = optim.adam
end
local best_model -- save best model
local fold_dev_scores = {}
local fold_test_scores = {}
local train, train_label -- training set for each fold
if opt.has_test == 1 then
train = all_train
train_label = all_train_label
end
-- Training folds.
for fold = 1, opt.folds do
local timer = torch.Timer()
local fold_time = timer:time().real
print()
print('==> fold ', fold)
if opt.has_test == 0 and opt.train_only == 0 then
-- make train/test data (90/10 split for train/test)
local N = all_train:size(1)
local i_start = math.floor((fold - 1) * (N / opt.folds) + 1)
local i_end = math.floor(fold * (N / opt.folds))
test = all_train:narrow(1, i_start, i_end - i_start + 1)
test_label = all_train_label:narrow(1, i_start, i_end - i_start + 1)
train = torch.cat(all_train:narrow(1, 1, i_start), all_train:narrow(1, i_end, N - i_end + 1), 1)
train_label = torch.cat(all_train_label:narrow(1, 1, i_start), all_train_label:narrow(1, i_end, N - i_end + 1), 1)
end
if opt.has_dev == 0 then
-- shuffle train to get dev/train split (10% to dev)
-- We organize our data in batches at this split before epoch training.
local J = train:size(1)
local shuffle = torch.randperm(J):long()
train = train:index(1, shuffle)
train_label = train_label:index(1, shuffle)
local num_batches = math.floor(J / opt.batch_size)
local num_train_batches = torch.round(num_batches * 0.9)
local train_size = num_train_batches * opt.batch_size
local dev_size = J - train_size
dev = train:narrow(1, train_size+1, dev_size)
dev_label = train_label:narrow(1, train_size+1, dev_size)
train = train:narrow(1, 1, train_size)
train_label = train_label:narrow(1, 1, train_size)
end
-- build model
local model, criterion, layers = build_model(w2v)
-- Call getParameters once
local params, grads = model:getParameters()
-- Training loop.
best_model = model:clone()
local best_epoch = 1
local best_err = 0.0
-- Training.
-- Gradient descent state should persist over epochs
local state = {}
for epoch = 1, opt.num_epochs do
local epoch_time = timer:time().real
-- Train
local train_err = trainer:train(train, train_label, model, criterion, optim_method,
layers, state, params, grads, opt)
-- Dev
local dev_err = trainer:test(dev, dev_label, model, criterion, layers, false, opt)
if dev_err > best_err then
best_model = model:clone()
best_epoch = epoch
best_err = dev_err
end
if opt.debug == 1 then
print()
print('time for one epoch: ', (timer:time().real - epoch_time) * 1000, 'ms')
print('\n')
end
print('epoch:', epoch, 'train perf:', 100*train_err, '%, val perf ', 100*dev_err, '%')
end
print('best dev err:', 100*best_err, '%, epoch ', best_epoch)
table.insert(fold_dev_scores, best_err)
-- Testing.
if opt.train_only == 0 then
local dump_features = ((opt.dump_feature_maps_file ~= '') and (fold == 1))
local test_err = trainer:test(test, test_label, best_model, criterion, layers, dump_features, opt)
print('test perf ', 100*test_err, '%')
table.insert(fold_test_scores, test_err)
end
if opt.debug == 1 then
print()
print('time for one fold: ', (timer:time().real - fold_time * 1000), 'ms')
print('\n')
end
-- save model progress
save_progress(fold_dev_scores, fold_test_scores, best_model, fold, opt)
end
return fold_dev_scores, fold_test_scores, best_model
end
function load_data()
local train, train_label
local dev, dev_label
local test, test_label
print('loading data...')
assert(opt.data ~= '', 'must provide hdf5 datafile')
local f = hdf5.open(opt.data, 'r')
local w2v = f:read('w2v'):all()
train = f:read('train'):all()
train_label = f:read('train_label'):all()
opt.num_classes = torch.max(train_label)
if f:read('dev'):dataspaceSize()[1] == 0 then
opt.has_dev = 0
else
opt.has_dev = 1
dev = f:read('dev'):all()
dev_label = f:read('dev_label'):all()
assert(torch.max(dev_label) <= opt.num_classes, 'more valid classes than train')
end
if f:read('test'):dataspaceSize()[1] == 0 then
opt.has_test = 0
else
opt.has_test = 1
test = f:read('test'):all()
test_label = f:read('test_label'):all()
assert(torch.max(test_label) <= opt.num_classes, 'more test classes than train')
end
print('data loaded!')
return train, train_label, test, test_label, dev, dev_label, w2v
end
function main()
-- parse arguments
opt = cmd:parse(arg)
if opt.seed ~= -1 then
torch.manualSeed(opt.seed)
end
if opt.cudnn == 1 then
require 'cutorch'
if opt.seed ~= -1 then
cutorch.manualSeedAll(opt.seed)
end
cutorch.setDevice(opt.gpuid)
end
-- Read HDF5 training data
local train, train_label
local test, test_label
local dev, dev_label
local w2v
train, train_label, test, test_label, dev, dev_label, w2v = load_data()
opt.vocab_size = w2v:size(1)
opt.vec_size = w2v:size(2)
opt.max_sent = train:size(2)
print('vocab size: ', opt.vocab_size)
print('vec size: ', opt.vec_size)
-- Retrieve kernels
loadstring("opt.kernels = " .. opt.kernels)()
if opt.zero_indexing == 1 then
train:add(1)
train_label:add(1)
if dev ~= nil then
dev:add(1)
dev_label:add(1)
end
if test ~= nil then
test:add(1)
test_label:add(1)
end
end
if opt.test_only == 1 then
assert(opt.warm_start_model ~= '', 'must have -warm_start_model for testing')
if opt.has_test ~= 1 then
print('dataset has no test file: using train instead')
test = train
test_label = train_label
end
local Trainer = require "trainer"
local trainer = Trainer.new()
print('Testing...')
local model, criterion, layers = build_model(w2v)
local dump_features = (opt.dump_feature_maps_file ~= '')
local test_err = trainer:test(test, test_label, model, criterion, layers, dump_features, opt)
print('Test score:', test_err)
os.exit()
end
if opt.has_test == 1 or opt.train_only == 1 then
-- don't do CV if we have a test set, or are training only
opt.folds = 1
end
-- make sure output directory exists - results are saved within train_loop
if not path.exists('results') then lfs.mkdir('results') end
-- training loop
local fold_dev_scores, fold_test_scores, best_model = train_loop(train, train_label, test, test_label, dev, dev_label, w2v)
print('dev scores:')
print(fold_dev_scores)
print('average dev score: ', torch.Tensor(fold_dev_scores):mean())
if opt.train_only == 0 then
print('test scores:')
print(fold_test_scores)
print('average test score: ', torch.Tensor(fold_test_scores):mean())
end
end
main()