-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcommon_config.py
49 lines (39 loc) · 1.73 KB
/
common_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
Provides some common settings for RETURNN configs (training + search).
Use `from ... import *` directly in your config for this module.
"""
import sys
from .multi_gpu_horovod import * # noqa
from returnn.config import get_global_config
config = get_global_config()
# task
use_tensorflow = True
task = config.value("task", "train")
debug_mode = False
if int(os.environ.get("RETURNN_DEBUG", "0")):
print("** DEBUG MODE", file=sys.stderr)
# By itself, this doesn't do anything.
# In your main config, you might select a smaller batch size, or other things,
# depending on this flag.
debug_mode = True
dry_run = True
# Enforce usage of GPU. (Disable this for testing when you only have a CPU.)
device = os.environ.get("RETURNN_DEVICE", None if debug_mode else "gpu")
# allow_growth should be used when the GPU is shared (e.g. with Xorg).
# However, don't set by default (for performance reasons).
if os.environ.get("RETURNN_TF_SESSION_OPTS"):
tf_session_opts = eval(os.environ["RETURNN_TF_SESSION_OPTS"])
# tf_session_opts = {"gpu_options": {"allow_growth": True}}
if config.has("beam_size"):
beam_size = config.int("beam_size", 0)
print("** beam_size %i" % beam_size, file=sys.stderr)
else:
beam_size = 12
search_output_layer = "decision"
debug_print_layer_output_template = True # doesn't cost anything. always recommended
log_batch_size = True # only relevant with verbosity 5
tf_log_memory_usage = True
# Verbosity 5 will print some stats (loss, batch size, maybe other things) per single minibatch.
# All lower verbosity will not. (If you don't want 5, then recommended would be 4 or 3.)
# (You will get an interactive bar for verbosity<5 for the epoch progress if you use an interactive shell.)
log_verbosity = 5