-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathsty.rs
1681 lines (1478 loc) · 57.3 KB
/
sty.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This module contains TypeVariants and its major components
use hir::def_id::DefId;
use middle::const_val::ConstVal;
use middle::region;
use rustc_data_structures::indexed_vec::Idx;
use ty::subst::{Substs, Subst, Kind, UnpackedKind};
use ty::{self, AdtDef, TypeFlags, Ty, TyCtxt, TypeFoldable};
use ty::{Slice, TyS};
use util::captures::Captures;
use std::iter;
use std::cmp::Ordering;
use syntax::abi;
use syntax::ast::{self, Name};
use syntax::symbol::{keywords, InternedString};
use serialize;
use hir;
use self::InferTy::*;
use self::TypeVariants::*;
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct TypeAndMut<'tcx> {
pub ty: Ty<'tcx>,
pub mutbl: hir::Mutability,
}
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash,
RustcEncodable, RustcDecodable, Copy)]
/// A "free" region `fr` can be interpreted as "some region
/// at least as big as the scope `fr.scope`".
pub struct FreeRegion {
pub scope: DefId,
pub bound_region: BoundRegion,
}
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash,
RustcEncodable, RustcDecodable, Copy)]
pub enum BoundRegion {
/// An anonymous region parameter for a given fn (&T)
BrAnon(u32),
/// Named region parameters for functions (a in &'a T)
///
/// The def-id is needed to distinguish free regions in
/// the event of shadowing.
BrNamed(DefId, Name),
/// Fresh bound identifiers created during GLB computations.
BrFresh(u32),
/// Anonymous region for the implicit env pointer parameter
/// to a closure
BrEnv,
}
impl BoundRegion {
pub fn is_named(&self) -> bool {
match *self {
BoundRegion::BrNamed(..) => true,
_ => false,
}
}
}
/// NB: If you change this, you'll probably want to change the corresponding
/// AST structure in libsyntax/ast.rs as well.
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub enum TypeVariants<'tcx> {
/// The primitive boolean type. Written as `bool`.
TyBool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
TyChar,
/// A primitive signed integer type. For example, `i32`.
TyInt(ast::IntTy),
/// A primitive unsigned integer type. For example, `u32`.
TyUint(ast::UintTy),
/// A primitive floating-point type. For example, `f64`.
TyFloat(ast::FloatTy),
/// Structures, enumerations and unions.
///
/// Substs here, possibly against intuition, *may* contain `TyParam`s.
/// That is, even after substitution it is possible that there are type
/// variables. This happens when the `TyAdt` corresponds to an ADT
/// definition and not a concrete use of it.
TyAdt(&'tcx AdtDef, &'tcx Substs<'tcx>),
TyForeign(DefId),
/// The pointee of a string slice. Written as `str`.
TyStr,
/// An array with the given length. Written as `[T; n]`.
TyArray(Ty<'tcx>, &'tcx ty::Const<'tcx>),
/// The pointee of an array slice. Written as `[T]`.
TySlice(Ty<'tcx>),
/// A raw pointer. Written as `*mut T` or `*const T`
TyRawPtr(TypeAndMut<'tcx>),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
TyRef(Region<'tcx>, TypeAndMut<'tcx>),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type.
TyFnDef(DefId, &'tcx Substs<'tcx>),
/// A pointer to a function. Written as `fn() -> i32`.
TyFnPtr(PolyFnSig<'tcx>),
/// A trait, defined with `trait`.
TyDynamic(Binder<&'tcx Slice<ExistentialPredicate<'tcx>>>, ty::Region<'tcx>),
/// The anonymous type of a closure. Used to represent the type of
/// `|a| a`.
TyClosure(DefId, ClosureSubsts<'tcx>),
/// The anonymous type of a generator. Used to represent the type of
/// `|a| yield a`.
TyGenerator(DefId, ClosureSubsts<'tcx>, GeneratorInterior<'tcx>),
/// A type representin the types stored inside a generator.
/// This should only appear in GeneratorInteriors.
TyGeneratorWitness(Binder<&'tcx Slice<Ty<'tcx>>>),
/// The never type `!`
TyNever,
/// A tuple type. For example, `(i32, bool)`.
TyTuple(&'tcx Slice<Ty<'tcx>>),
/// The projection of an associated type. For example,
/// `<T as Trait<..>>::N`.
TyProjection(ProjectionTy<'tcx>),
/// Anonymized (`impl Trait`) type found in a return type.
/// The DefId comes from the `impl Trait` ast::Ty node, and the
/// substitutions are for the generics of the function in question.
/// After typeck, the concrete type can be found in the `types` map.
TyAnon(DefId, &'tcx Substs<'tcx>),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}
TyParam(ParamTy),
/// A type variable used during type-checking.
TyInfer(InferTy),
/// A placeholder for a type which could not be computed; this is
/// propagated to avoid useless error messages.
TyError,
}
/// A closure can be modeled as a struct that looks like:
///
/// struct Closure<'l0...'li, T0...Tj, CK, CS, U0...Uk> {
/// upvar0: U0,
/// ...
/// upvark: Uk
/// }
///
/// where:
///
/// - 'l0...'li and T0...Tj are the lifetime and type parameters
/// in scope on the function that defined the closure,
/// - CK represents the *closure kind* (Fn vs FnMut vs FnOnce). This
/// is rather hackily encoded via a scalar type. See
/// `TyS::to_opt_closure_kind` for details.
/// - CS represents the *closure signature*, representing as a `fn()`
/// type. For example, `fn(u32, u32) -> u32` would mean that the closure
/// implements `CK<(u32, u32), Output = u32>`, where `CK` is the trait
/// specified above.
/// - U0...Uk are type parameters representing the types of its upvars
/// (borrowed, if appropriate; that is, if Ui represents a by-ref upvar,
/// and the up-var has the type `Foo`, then `Ui = &Foo`).
///
/// So, for example, given this function:
///
/// fn foo<'a, T>(data: &'a mut T) {
/// do(|| data.count += 1)
/// }
///
/// the type of the closure would be something like:
///
/// struct Closure<'a, T, U0> {
/// data: U0
/// }
///
/// Note that the type of the upvar is not specified in the struct.
/// You may wonder how the impl would then be able to use the upvar,
/// if it doesn't know it's type? The answer is that the impl is
/// (conceptually) not fully generic over Closure but rather tied to
/// instances with the expected upvar types:
///
/// impl<'b, 'a, T> FnMut() for Closure<'a, T, &'b mut &'a mut T> {
/// ...
/// }
///
/// You can see that the *impl* fully specified the type of the upvar
/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
/// (Here, I am assuming that `data` is mut-borrowed.)
///
/// Now, the last question you may ask is: Why include the upvar types
/// as extra type parameters? The reason for this design is that the
/// upvar types can reference lifetimes that are internal to the
/// creating function. In my example above, for example, the lifetime
/// `'b` represents the scope of the closure itself; this is some
/// subset of `foo`, probably just the scope of the call to the to
/// `do()`. If we just had the lifetime/type parameters from the
/// enclosing function, we couldn't name this lifetime `'b`. Note that
/// there can also be lifetimes in the types of the upvars themselves,
/// if one of them happens to be a reference to something that the
/// creating fn owns.
///
/// OK, you say, so why not create a more minimal set of parameters
/// that just includes the extra lifetime parameters? The answer is
/// primarily that it would be hard --- we don't know at the time when
/// we create the closure type what the full types of the upvars are,
/// nor do we know which are borrowed and which are not. In this
/// design, we can just supply a fresh type parameter and figure that
/// out later.
///
/// All right, you say, but why include the type parameters from the
/// original function then? The answer is that trans may need them
/// when monomorphizing, and they may not appear in the upvars. A
/// closure could capture no variables but still make use of some
/// in-scope type parameter with a bound (e.g., if our example above
/// had an extra `U: Default`, and the closure called `U::default()`).
///
/// There is another reason. This design (implicitly) prohibits
/// closures from capturing themselves (except via a trait
/// object). This simplifies closure inference considerably, since it
/// means that when we infer the kind of a closure or its upvars, we
/// don't have to handle cycles where the decisions we make for
/// closure C wind up influencing the decisions we ought to make for
/// closure C (which would then require fixed point iteration to
/// handle). Plus it fixes an ICE. :P
///
/// ## Generators
///
/// Perhaps surprisingly, `ClosureSubsts` are also used for
/// generators. In that case, what is written above is only half-true
/// -- the set of type parameters is similar, but the role of CK and
/// CS are different. CK represents the "yield type" and CS
/// represents the "return type" of the generator.
///
/// It'd be nice to split this struct into ClosureSubsts and
/// GeneratorSubsts, I believe. -nmatsakis
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct ClosureSubsts<'tcx> {
/// Lifetime and type parameters from the enclosing function,
/// concatenated with the types of the upvars.
///
/// These are separated out because trans wants to pass them around
/// when monomorphizing.
pub substs: &'tcx Substs<'tcx>,
}
/// Struct returned by `split()`. Note that these are subslices of the
/// parent slice and not canonical substs themselves.
struct SplitClosureSubsts<'tcx> {
closure_kind_ty: Ty<'tcx>,
closure_sig_ty: Ty<'tcx>,
upvar_kinds: &'tcx [Kind<'tcx>],
}
impl<'tcx> ClosureSubsts<'tcx> {
/// Divides the closure substs into their respective
/// components. Single source of truth with respect to the
/// ordering.
fn split(self, def_id: DefId, tcx: TyCtxt<'_, '_, '_>) -> SplitClosureSubsts<'tcx> {
let generics = tcx.generics_of(def_id);
let parent_len = generics.parent_count();
SplitClosureSubsts {
closure_kind_ty: self.substs.type_at(parent_len),
closure_sig_ty: self.substs.type_at(parent_len + 1),
upvar_kinds: &self.substs[parent_len + 2..],
}
}
#[inline]
pub fn upvar_tys(self, def_id: DefId, tcx: TyCtxt<'_, '_, '_>) ->
impl Iterator<Item=Ty<'tcx>> + 'tcx
{
let SplitClosureSubsts { upvar_kinds, .. } = self.split(def_id, tcx);
upvar_kinds.iter().map(|t| {
if let UnpackedKind::Type(ty) = t.unpack() {
ty
} else {
bug!("upvar should be type")
}
})
}
/// Returns the closure kind for this closure; may return a type
/// variable during inference. To get the closure kind during
/// inference, use `infcx.closure_kind(def_id, substs)`.
pub fn closure_kind_ty(self, def_id: DefId, tcx: TyCtxt<'_, '_, '_>) -> Ty<'tcx> {
self.split(def_id, tcx).closure_kind_ty
}
/// Returns the type representing the closure signature for this
/// closure; may contain type variables during inference. To get
/// the closure signature during inference, use
/// `infcx.fn_sig(def_id)`.
pub fn closure_sig_ty(self, def_id: DefId, tcx: TyCtxt<'_, '_, '_>) -> Ty<'tcx> {
self.split(def_id, tcx).closure_sig_ty
}
/// Returns the type representing the yield type of the generator.
pub fn generator_yield_ty(self, def_id: DefId, tcx: TyCtxt<'_, '_, '_>) -> Ty<'tcx> {
self.closure_kind_ty(def_id, tcx)
}
/// Returns the type representing the return type of the generator.
pub fn generator_return_ty(self, def_id: DefId, tcx: TyCtxt<'_, '_, '_>) -> Ty<'tcx> {
self.closure_sig_ty(def_id, tcx)
}
/// Return the "generator signature", which consists of its yield
/// and return types.
///
/// NB. Some bits of the code prefers to see this wrapped in a
/// binder, but it never contains bound regions. Probably this
/// function should be removed.
pub fn generator_poly_sig(self, def_id: DefId, tcx: TyCtxt<'_, '_, '_>) -> PolyGenSig<'tcx> {
ty::Binder(self.generator_sig(def_id, tcx))
}
/// Return the "generator signature", which consists of its yield
/// and return types.
pub fn generator_sig(self, def_id: DefId, tcx: TyCtxt<'_, '_, '_>) -> GenSig<'tcx> {
ty::GenSig {
yield_ty: self.generator_yield_ty(def_id, tcx),
return_ty: self.generator_return_ty(def_id, tcx),
}
}
}
impl<'tcx> ClosureSubsts<'tcx> {
/// Returns the closure kind for this closure; only usable outside
/// of an inference context, because in that context we know that
/// there are no type variables.
///
/// If you have an inference context, use `infcx.closure_kind()`.
pub fn closure_kind(self, def_id: DefId, tcx: TyCtxt<'_, 'tcx, 'tcx>) -> ty::ClosureKind {
self.split(def_id, tcx).closure_kind_ty.to_opt_closure_kind().unwrap()
}
/// Extracts the signature from the closure; only usable outside
/// of an inference context, because in that context we know that
/// there are no type variables.
///
/// If you have an inference context, use `infcx.closure_sig()`.
pub fn closure_sig(self, def_id: DefId, tcx: TyCtxt<'_, 'tcx, 'tcx>) -> ty::PolyFnSig<'tcx> {
match self.closure_sig_ty(def_id, tcx).sty {
ty::TyFnPtr(sig) => sig,
ref t => bug!("closure_sig_ty is not a fn-ptr: {:?}", t),
}
}
}
impl<'a, 'gcx, 'tcx> ClosureSubsts<'tcx> {
/// This returns the types of the MIR locals which had to be stored across suspension points.
/// It is calculated in rustc_mir::transform::generator::StateTransform.
/// All the types here must be in the tuple in GeneratorInterior.
pub fn state_tys(
self,
def_id: DefId,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
) -> impl Iterator<Item=Ty<'tcx>> + Captures<'gcx> + 'a {
let state = tcx.generator_layout(def_id).fields.iter();
state.map(move |d| d.ty.subst(tcx, self.substs))
}
/// This is the types of the fields of a generate which
/// is available before the generator transformation.
/// It includes the upvars and the state discriminant which is u32.
pub fn pre_transforms_tys(self, def_id: DefId, tcx: TyCtxt<'a, 'gcx, 'tcx>) ->
impl Iterator<Item=Ty<'tcx>> + 'a
{
self.upvar_tys(def_id, tcx).chain(iter::once(tcx.types.u32))
}
/// This is the types of all the fields stored in a generator.
/// It includes the upvars, state types and the state discriminant which is u32.
pub fn field_tys(self, def_id: DefId, tcx: TyCtxt<'a, 'gcx, 'tcx>) ->
impl Iterator<Item=Ty<'tcx>> + Captures<'gcx> + 'a
{
self.pre_transforms_tys(def_id, tcx).chain(self.state_tys(def_id, tcx))
}
}
/// This describes the types that can be contained in a generator.
/// It will be a type variable initially and unified in the last stages of typeck of a body.
/// It contains a tuple of all the types that could end up on a generator frame.
/// The state transformation MIR pass may only produce layouts which mention types in this tuple.
/// Upvars are not counted here.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct GeneratorInterior<'tcx> {
pub witness: Ty<'tcx>,
pub movable: bool,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum ExistentialPredicate<'tcx> {
/// e.g. Iterator
Trait(ExistentialTraitRef<'tcx>),
/// e.g. Iterator::Item = T
Projection(ExistentialProjection<'tcx>),
/// e.g. Send
AutoTrait(DefId),
}
impl<'a, 'gcx, 'tcx> ExistentialPredicate<'tcx> {
pub fn cmp(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, other: &Self) -> Ordering {
use self::ExistentialPredicate::*;
match (*self, *other) {
(Trait(_), Trait(_)) => Ordering::Equal,
(Projection(ref a), Projection(ref b)) =>
tcx.def_path_hash(a.item_def_id).cmp(&tcx.def_path_hash(b.item_def_id)),
(AutoTrait(ref a), AutoTrait(ref b)) =>
tcx.trait_def(*a).def_path_hash.cmp(&tcx.trait_def(*b).def_path_hash),
(Trait(_), _) => Ordering::Less,
(Projection(_), Trait(_)) => Ordering::Greater,
(Projection(_), _) => Ordering::Less,
(AutoTrait(_), _) => Ordering::Greater,
}
}
}
impl<'a, 'gcx, 'tcx> Binder<ExistentialPredicate<'tcx>> {
pub fn with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, self_ty: Ty<'tcx>)
-> ty::Predicate<'tcx> {
use ty::ToPredicate;
match *self.skip_binder() {
ExistentialPredicate::Trait(tr) => Binder(tr).with_self_ty(tcx, self_ty).to_predicate(),
ExistentialPredicate::Projection(p) =>
ty::Predicate::Projection(Binder(p.with_self_ty(tcx, self_ty))),
ExistentialPredicate::AutoTrait(did) => {
let trait_ref = Binder(ty::TraitRef {
def_id: did,
substs: tcx.mk_substs_trait(self_ty, &[]),
});
trait_ref.to_predicate()
}
}
}
}
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<ExistentialPredicate<'tcx>> {}
impl<'tcx> Slice<ExistentialPredicate<'tcx>> {
pub fn principal(&self) -> Option<ExistentialTraitRef<'tcx>> {
match self.get(0) {
Some(&ExistentialPredicate::Trait(tr)) => Some(tr),
_ => None,
}
}
#[inline]
pub fn projection_bounds<'a>(&'a self) ->
impl Iterator<Item=ExistentialProjection<'tcx>> + 'a {
self.iter().filter_map(|predicate| {
match *predicate {
ExistentialPredicate::Projection(p) => Some(p),
_ => None,
}
})
}
#[inline]
pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item=DefId> + 'a {
self.iter().filter_map(|predicate| {
match *predicate {
ExistentialPredicate::AutoTrait(d) => Some(d),
_ => None
}
})
}
}
impl<'tcx> Binder<&'tcx Slice<ExistentialPredicate<'tcx>>> {
pub fn principal(&self) -> Option<PolyExistentialTraitRef<'tcx>> {
self.skip_binder().principal().map(Binder)
}
#[inline]
pub fn projection_bounds<'a>(&'a self) ->
impl Iterator<Item=PolyExistentialProjection<'tcx>> + 'a {
self.skip_binder().projection_bounds().map(Binder)
}
#[inline]
pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item=DefId> + 'a {
self.skip_binder().auto_traits()
}
pub fn iter<'a>(&'a self)
-> impl DoubleEndedIterator<Item=Binder<ExistentialPredicate<'tcx>>> + 'tcx {
self.skip_binder().iter().cloned().map(Binder)
}
}
/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where clause:
///
/// T : Foo<U>
///
/// This would be represented by a trait-reference where the def-id is the
/// def-id for the trait `Foo` and the substs define `T` as parameter 0,
/// and `U` as parameter 1.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the substitutions.
///
/// Note that a `TraitRef` introduces a level of region binding, to
/// account for higher-ranked trait bounds like `T : for<'a> Foo<&'a
/// U>` or higher-ranked object types.
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct TraitRef<'tcx> {
pub def_id: DefId,
pub substs: &'tcx Substs<'tcx>,
}
impl<'tcx> TraitRef<'tcx> {
pub fn new(def_id: DefId, substs: &'tcx Substs<'tcx>) -> TraitRef<'tcx> {
TraitRef { def_id: def_id, substs: substs }
}
pub fn self_ty(&self) -> Ty<'tcx> {
self.substs.type_at(0)
}
pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
// Select only the "input types" from a trait-reference. For
// now this is all the types that appear in the
// trait-reference, but it should eventually exclude
// associated types.
self.substs.types()
}
}
pub type PolyTraitRef<'tcx> = Binder<TraitRef<'tcx>>;
impl<'tcx> PolyTraitRef<'tcx> {
pub fn self_ty(&self) -> Ty<'tcx> {
self.0.self_ty()
}
pub fn def_id(&self) -> DefId {
self.0.def_id
}
pub fn substs(&self) -> &'tcx Substs<'tcx> {
// FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
self.0.substs
}
pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
// FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
self.0.input_types()
}
pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
// Note that we preserve binding levels
Binder(ty::TraitPredicate { trait_ref: self.0.clone() })
}
}
/// An existential reference to a trait, where `Self` is erased.
/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
///
/// exists T. T: Trait<'a, 'b, X, Y>
///
/// The substitutions don't include the erased `Self`, only trait
/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct ExistentialTraitRef<'tcx> {
pub def_id: DefId,
pub substs: &'tcx Substs<'tcx>,
}
impl<'a, 'gcx, 'tcx> ExistentialTraitRef<'tcx> {
pub fn input_types<'b>(&'b self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'b {
// Select only the "input types" from a trait-reference. For
// now this is all the types that appear in the
// trait-reference, but it should eventually exclude
// associated types.
self.substs.types()
}
/// Object types don't have a self-type specified. Therefore, when
/// we convert the principal trait-ref into a normal trait-ref,
/// you must give *some* self-type. A common choice is `mk_err()`
/// or some skolemized type.
pub fn with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, self_ty: Ty<'tcx>)
-> ty::TraitRef<'tcx> {
// otherwise the escaping regions would be captured by the binder
assert!(!self_ty.has_escaping_regions());
ty::TraitRef {
def_id: self.def_id,
substs: tcx.mk_substs(
iter::once(self_ty.into()).chain(self.substs.iter().cloned()))
}
}
}
pub type PolyExistentialTraitRef<'tcx> = Binder<ExistentialTraitRef<'tcx>>;
impl<'tcx> PolyExistentialTraitRef<'tcx> {
pub fn def_id(&self) -> DefId {
self.0.def_id
}
pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
// FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
self.0.input_types()
}
}
/// Binder is a binder for higher-ranked lifetimes. It is part of the
/// compiler's representation for things like `for<'a> Fn(&'a isize)`
/// (which would be represented by the type `PolyTraitRef ==
/// Binder<TraitRef>`). Note that when we skolemize, instantiate,
/// erase, or otherwise "discharge" these bound regions, we change the
/// type from `Binder<T>` to just `T` (see
/// e.g. `liberate_late_bound_regions`).
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct Binder<T>(pub T);
impl<T> Binder<T> {
/// Wraps `value` in a binder, asserting that `value` does not
/// contain any bound regions that would be bound by the
/// binder. This is commonly used to 'inject' a value T into a
/// different binding level.
pub fn dummy<'tcx>(value: T) -> Binder<T>
where T: TypeFoldable<'tcx>
{
assert!(!value.has_escaping_regions());
Binder(value)
}
/// Skips the binder and returns the "bound" value. This is a
/// risky thing to do because it's easy to get confused about
/// debruijn indices and the like. It is usually better to
/// discharge the binder using `no_late_bound_regions` or
/// `replace_late_bound_regions` or something like
/// that. `skip_binder` is only valid when you are either
/// extracting data that has nothing to do with bound regions, you
/// are doing some sort of test that does not involve bound
/// regions, or you are being very careful about your depth
/// accounting.
///
/// Some examples where `skip_binder` is reasonable:
///
/// - extracting the def-id from a PolyTraitRef;
/// - comparing the self type of a PolyTraitRef to see if it is equal to
/// a type parameter `X`, since the type `X` does not reference any regions
pub fn skip_binder(&self) -> &T {
&self.0
}
pub fn as_ref(&self) -> Binder<&T> {
ty::Binder(&self.0)
}
pub fn map_bound_ref<F, U>(&self, f: F) -> Binder<U>
where F: FnOnce(&T) -> U
{
self.as_ref().map_bound(f)
}
pub fn map_bound<F, U>(self, f: F) -> Binder<U>
where F: FnOnce(T) -> U
{
ty::Binder(f(self.0))
}
/// Unwraps and returns the value within, but only if it contains
/// no bound regions at all. (In other words, if this binder --
/// and indeed any enclosing binder -- doesn't bind anything at
/// all.) Otherwise, returns `None`.
///
/// (One could imagine having a method that just unwraps a single
/// binder, but permits late-bound regions bound by enclosing
/// binders, but that would require adjusting the debruijn
/// indices, and given the shallow binding structure we often use,
/// would not be that useful.)
pub fn no_late_bound_regions<'tcx>(self) -> Option<T>
where T : TypeFoldable<'tcx>
{
if self.skip_binder().has_escaping_regions() {
None
} else {
Some(self.skip_binder().clone())
}
}
/// Given two things that have the same binder level,
/// and an operation that wraps on their contents, execute the operation
/// and then wrap its result.
///
/// `f` should consider bound regions at depth 1 to be free, and
/// anything it produces with bound regions at depth 1 will be
/// bound in the resulting return value.
pub fn fuse<U,F,R>(self, u: Binder<U>, f: F) -> Binder<R>
where F: FnOnce(T, U) -> R
{
ty::Binder(f(self.0, u.0))
}
/// Split the contents into two things that share the same binder
/// level as the original, returning two distinct binders.
///
/// `f` should consider bound regions at depth 1 to be free, and
/// anything it produces with bound regions at depth 1 will be
/// bound in the resulting return values.
pub fn split<U,V,F>(self, f: F) -> (Binder<U>, Binder<V>)
where F: FnOnce(T) -> (U, V)
{
let (u, v) = f(self.0);
(ty::Binder(u), ty::Binder(v))
}
}
/// Represents the projection of an associated type. In explicit UFCS
/// form this would be written `<T as Trait<..>>::N`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct ProjectionTy<'tcx> {
/// The parameters of the associated item.
pub substs: &'tcx Substs<'tcx>,
/// The DefId of the TraitItem for the associated type N.
///
/// Note that this is not the DefId of the TraitRef containing this
/// associated type, which is in tcx.associated_item(item_def_id).container.
pub item_def_id: DefId,
}
impl<'a, 'tcx> ProjectionTy<'tcx> {
/// Construct a ProjectionTy by searching the trait from trait_ref for the
/// associated item named item_name.
pub fn from_ref_and_name(
tcx: TyCtxt, trait_ref: ty::TraitRef<'tcx>, item_name: Name
) -> ProjectionTy<'tcx> {
let item_def_id = tcx.associated_items(trait_ref.def_id).find(|item| {
item.kind == ty::AssociatedKind::Type &&
tcx.hygienic_eq(item_name, item.name, trait_ref.def_id)
}).unwrap().def_id;
ProjectionTy {
substs: trait_ref.substs,
item_def_id,
}
}
/// Extracts the underlying trait reference from this projection.
/// For example, if this is a projection of `<T as Iterator>::Item`,
/// then this function would return a `T: Iterator` trait reference.
pub fn trait_ref(&self, tcx: TyCtxt) -> ty::TraitRef<'tcx> {
let def_id = tcx.associated_item(self.item_def_id).container.id();
ty::TraitRef {
def_id,
substs: self.substs,
}
}
pub fn self_ty(&self) -> Ty<'tcx> {
self.substs.type_at(0)
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct GenSig<'tcx> {
pub yield_ty: Ty<'tcx>,
pub return_ty: Ty<'tcx>,
}
pub type PolyGenSig<'tcx> = Binder<GenSig<'tcx>>;
impl<'tcx> PolyGenSig<'tcx> {
pub fn yield_ty(&self) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|sig| sig.yield_ty)
}
pub fn return_ty(&self) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|sig| sig.return_ty)
}
}
/// Signature of a function type, which I have arbitrarily
/// decided to use to refer to the input/output types.
///
/// - `inputs` is the list of arguments and their modes.
/// - `output` is the return type.
/// - `variadic` indicates whether this is a variadic function. (only true for foreign fns)
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct FnSig<'tcx> {
pub inputs_and_output: &'tcx Slice<Ty<'tcx>>,
pub variadic: bool,
pub unsafety: hir::Unsafety,
pub abi: abi::Abi,
}
impl<'tcx> FnSig<'tcx> {
pub fn inputs(&self) -> &'tcx [Ty<'tcx>] {
&self.inputs_and_output[..self.inputs_and_output.len() - 1]
}
pub fn output(&self) -> Ty<'tcx> {
self.inputs_and_output[self.inputs_and_output.len() - 1]
}
}
pub type PolyFnSig<'tcx> = Binder<FnSig<'tcx>>;
impl<'tcx> PolyFnSig<'tcx> {
pub fn inputs(&self) -> Binder<&'tcx [Ty<'tcx>]> {
Binder(self.skip_binder().inputs())
}
pub fn input(&self, index: usize) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|fn_sig| fn_sig.inputs()[index])
}
pub fn inputs_and_output(&self) -> ty::Binder<&'tcx Slice<Ty<'tcx>>> {
self.map_bound_ref(|fn_sig| fn_sig.inputs_and_output)
}
pub fn output(&self) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|fn_sig| fn_sig.output().clone())
}
pub fn variadic(&self) -> bool {
self.skip_binder().variadic
}
pub fn unsafety(&self) -> hir::Unsafety {
self.skip_binder().unsafety
}
pub fn abi(&self) -> abi::Abi {
self.skip_binder().abi
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct ParamTy {
pub idx: u32,
pub name: InternedString,
}
impl<'a, 'gcx, 'tcx> ParamTy {
pub fn new(index: u32, name: InternedString) -> ParamTy {
ParamTy { idx: index, name: name }
}
pub fn for_self() -> ParamTy {
ParamTy::new(0, keywords::SelfType.name().as_str())
}
pub fn for_def(def: &ty::TypeParameterDef) -> ParamTy {
ParamTy::new(def.index, def.name)
}
pub fn to_ty(self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
tcx.mk_param(self.idx, self.name)
}
pub fn is_self(&self) -> bool {
if self.name == keywords::SelfType.name().as_str() {
assert_eq!(self.idx, 0);
true
} else {
false
}
}
}
/// A [De Bruijn index][dbi] is a standard means of representing
/// regions (and perhaps later types) in a higher-ranked setting. In
/// particular, imagine a type like this:
///
/// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
/// ^ ^ | | |
/// | | | | |
/// | +------------+ 1 | |
/// | | |
/// +--------------------------------+ 2 |
/// | |
/// +------------------------------------------+ 1
///
/// In this type, there are two binders (the outer fn and the inner
/// fn). We need to be able to determine, for any given region, which
/// fn type it is bound by, the inner or the outer one. There are
/// various ways you can do this, but a De Bruijn index is one of the
/// more convenient and has some nice properties. The basic idea is to
/// count the number of binders, inside out. Some examples should help
/// clarify what I mean.
///
/// Let's start with the reference type `&'b isize` that is the first
/// argument to the inner function. This region `'b` is assigned a De
/// Bruijn index of 1, meaning "the innermost binder" (in this case, a
/// fn). The region `'a` that appears in the second argument type (`&'a
/// isize`) would then be assigned a De Bruijn index of 2, meaning "the
/// second-innermost binder". (These indices are written on the arrays
/// in the diagram).
///
/// What is interesting is that De Bruijn index attached to a particular
/// variable will vary depending on where it appears. For example,
/// the final type `&'a char` also refers to the region `'a` declared on
/// the outermost fn. But this time, this reference is not nested within
/// any other binders (i.e., it is not an argument to the inner fn, but
/// rather the outer one). Therefore, in this case, it is assigned a
/// De Bruijn index of 1, because the innermost binder in that location
/// is the outer fn.
///
/// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
#[derive(Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug, Copy, PartialOrd, Ord)]
pub struct DebruijnIndex {
/// We maintain the invariant that this is never 0. So 1 indicates
/// the innermost binder. To ensure this, create with `DebruijnIndex::new`.
pub depth: u32,
}
pub type Region<'tcx> = &'tcx RegionKind;
/// Representation of regions.
///
/// Unlike types, most region variants are "fictitious", not concrete,
/// regions. Among these, `ReStatic`, `ReEmpty` and `ReScope` are the only
/// ones representing concrete regions.
///
/// ## Bound Regions
///
/// These are regions that are stored behind a binder and must be substituted
/// with some concrete region before being used. There are 2 kind of
/// bound regions: early-bound, which are bound in an item's Generics,
/// and are substituted by a Substs, and late-bound, which are part of
/// higher-ranked types (e.g. `for<'a> fn(&'a ())`) and are substituted by
/// the likes of `liberate_late_bound_regions`. The distinction exists
/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
///
/// Unlike TyParam-s, bound regions are not supposed to exist "in the wild"
/// outside their binder, e.g. in types passed to type inference, and
/// should first be substituted (by skolemized regions, free regions,
/// or region variables).
///
/// ## Skolemized and Free Regions
///
/// One often wants to work with bound regions without knowing their precise
/// identity. For example, when checking a function, the lifetime of a borrow
/// can end up being assigned to some region parameter. In these cases,
/// it must be ensured that bounds on the region can't be accidentally
/// assumed without being checked.
///
/// The process of doing that is called "skolemization". The bound regions
/// are replaced by skolemized markers, which don't satisfy any relation
/// not explicitly provided.
///
/// There are 2 kinds of skolemized regions in rustc: `ReFree` and
/// `ReSkolemized`. When checking an item's body, `ReFree` is supposed
/// to be used. These also support explicit bounds: both the internally-stored
/// *scope*, which the region is assumed to outlive, as well as other
/// relations stored in the `FreeRegionMap`. Note that these relations
/// aren't checked when you `make_subregion` (or `eq_types`), only by
/// `resolve_regions_and_report_errors`.
///
/// When working with higher-ranked types, some region relations aren't
/// yet known, so you can't just call `resolve_regions_and_report_errors`.
/// `ReSkolemized` is designed for this purpose. In these contexts,
/// there's also the risk that some inference variable laying around will
/// get unified with your skolemized region: if you want to check whether
/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
/// with a skolemized region `'%a`, the variable `'_` would just be
/// instantiated to the skolemized region `'%a`, which is wrong because
/// the inference variable is supposed to satisfy the relation
/// *for every value of the skolemized region*. To ensure that doesn't
/// happen, you can use `leak_check`. This is more clearly explained
/// by the [rustc guide].
///
/// [1]: http://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
/// [2]: http://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/