-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathproject.rs
1594 lines (1442 loc) · 61.9 KB
/
project.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Code for projecting associated types out of trait references.
use super::specialization_graph;
use super::translate_substs;
use super::util;
use super::MismatchedProjectionTypes;
use super::Obligation;
use super::ObligationCause;
use super::PredicateObligation;
use super::Selection;
use super::SelectionContext;
use super::SelectionError;
use super::{
ImplSourceClosureData, ImplSourceDiscriminantKindData, ImplSourceFnPointerData,
ImplSourceGeneratorData, ImplSourcePointeeData, ImplSourceUserDefinedData,
};
use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
use crate::traits::error_reporting::InferCtxtExt;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::ErrorReported;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_infer::infer::resolve::OpportunisticRegionResolver;
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder};
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, WithConstness};
use rustc_span::symbol::sym;
pub use rustc_middle::traits::Reveal;
pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::ProjectionTy<'tcx>>;
pub(super) struct InProgress;
/// When attempting to resolve `<T as TraitRef>::Name` ...
#[derive(Debug)]
pub enum ProjectionTyError<'tcx> {
/// ...we found multiple sources of information and couldn't resolve the ambiguity.
TooManyCandidates,
/// ...an error occurred matching `T : TraitRef`
TraitSelectionError(SelectionError<'tcx>),
}
#[derive(PartialEq, Eq, Debug)]
enum ProjectionTyCandidate<'tcx> {
/// From a where-clause in the env or object type
ParamEnv(ty::PolyProjectionPredicate<'tcx>),
/// From the definition of `Trait` when you have something like <<A as Trait>::B as Trait2>::C
TraitDef(ty::PolyProjectionPredicate<'tcx>),
/// Bounds specified on an object type
Object(ty::PolyProjectionPredicate<'tcx>),
/// From a "impl" (or a "pseudo-impl" returned by select)
Select(Selection<'tcx>),
}
enum ProjectionTyCandidateSet<'tcx> {
None,
Single(ProjectionTyCandidate<'tcx>),
Ambiguous,
Error(SelectionError<'tcx>),
}
impl<'tcx> ProjectionTyCandidateSet<'tcx> {
fn mark_ambiguous(&mut self) {
*self = ProjectionTyCandidateSet::Ambiguous;
}
fn mark_error(&mut self, err: SelectionError<'tcx>) {
*self = ProjectionTyCandidateSet::Error(err);
}
// Returns true if the push was successful, or false if the candidate
// was discarded -- this could be because of ambiguity, or because
// a higher-priority candidate is already there.
fn push_candidate(&mut self, candidate: ProjectionTyCandidate<'tcx>) -> bool {
use self::ProjectionTyCandidate::*;
use self::ProjectionTyCandidateSet::*;
// This wacky variable is just used to try and
// make code readable and avoid confusing paths.
// It is assigned a "value" of `()` only on those
// paths in which we wish to convert `*self` to
// ambiguous (and return false, because the candidate
// was not used). On other paths, it is not assigned,
// and hence if those paths *could* reach the code that
// comes after the match, this fn would not compile.
let convert_to_ambiguous;
match self {
None => {
*self = Single(candidate);
return true;
}
Single(current) => {
// Duplicates can happen inside ParamEnv. In the case, we
// perform a lazy deduplication.
if current == &candidate {
return false;
}
// Prefer where-clauses. As in select, if there are multiple
// candidates, we prefer where-clause candidates over impls. This
// may seem a bit surprising, since impls are the source of
// "truth" in some sense, but in fact some of the impls that SEEM
// applicable are not, because of nested obligations. Where
// clauses are the safer choice. See the comment on
// `select::SelectionCandidate` and #21974 for more details.
match (current, candidate) {
(ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
(ParamEnv(..), _) => return false,
(_, ParamEnv(..)) => unreachable!(),
(_, _) => convert_to_ambiguous = (),
}
}
Ambiguous | Error(..) => {
return false;
}
}
// We only ever get here when we moved from a single candidate
// to ambiguous.
let () = convert_to_ambiguous;
*self = Ambiguous;
false
}
}
/// Evaluates constraints of the form:
///
/// for<...> <T as Trait>::U == V
///
/// If successful, this may result in additional obligations. Also returns
/// the projection cache key used to track these additional obligations.
///
/// ## Returns
///
/// - `Err(_)`: the projection can be normalized, but is not equal to the
/// expected type.
/// - `Ok(Err(InProgress))`: this is called recursively while normalizing
/// the same projection.
/// - `Ok(Ok(None))`: The projection cannot be normalized due to ambiguity
/// (resolving some inference variables in the projection may fix this).
/// - `Ok(Ok(Some(obligations)))`: The projection bound holds subject to
/// the given obligations. If the projection cannot be normalized because
/// the required trait bound doesn't hold this returned with `obligations`
/// being a predicate that cannot be proven.
#[instrument(level = "debug", skip(selcx))]
pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &PolyProjectionObligation<'tcx>,
) -> Result<
Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
MismatchedProjectionTypes<'tcx>,
> {
let infcx = selcx.infcx();
infcx.commit_if_ok(|_snapshot| {
let placeholder_predicate =
infcx.replace_bound_vars_with_placeholders(obligation.predicate);
let placeholder_obligation = obligation.with(placeholder_predicate);
let result = project_and_unify_type(selcx, &placeholder_obligation)?;
Ok(result)
})
}
/// Evaluates constraints of the form:
///
/// <T as Trait>::U == V
///
/// If successful, this may result in additional obligations.
///
/// See [poly_project_and_unify_type] for an explanation of the return value.
fn project_and_unify_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionObligation<'tcx>,
) -> Result<
Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
MismatchedProjectionTypes<'tcx>,
> {
debug!(?obligation, "project_and_unify_type");
let mut obligations = vec![];
let normalized_ty = match opt_normalize_projection_type(
selcx,
obligation.param_env,
obligation.predicate.projection_ty,
obligation.cause.clone(),
obligation.recursion_depth,
&mut obligations,
) {
Ok(Some(n)) => n,
Ok(None) => return Ok(Ok(None)),
Err(InProgress) => return Ok(Err(InProgress)),
};
debug!(?normalized_ty, ?obligations, "project_and_unify_type result");
let infcx = selcx.infcx();
match infcx
.at(&obligation.cause, obligation.param_env)
.eq(normalized_ty, obligation.predicate.ty)
{
Ok(InferOk { obligations: inferred_obligations, value: () }) => {
obligations.extend(inferred_obligations);
Ok(Ok(Some(obligations)))
}
Err(err) => {
debug!("project_and_unify_type: equating types encountered error {:?}", err);
Err(MismatchedProjectionTypes { err })
}
}
}
/// Normalizes any associated type projections in `value`, replacing
/// them with a fully resolved type where possible. The return value
/// combines the normalized result and any additional obligations that
/// were incurred as result.
pub fn normalize<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
value: T,
) -> Normalized<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
let mut obligations = Vec::new();
let value = normalize_to(selcx, param_env, cause, value, &mut obligations);
Normalized { value, obligations }
}
pub fn normalize_to<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
value: T,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> T
where
T: TypeFoldable<'tcx>,
{
normalize_with_depth_to(selcx, param_env, cause, 0, value, obligations)
}
/// As `normalize`, but with a custom depth.
pub fn normalize_with_depth<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
value: T,
) -> Normalized<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
let mut obligations = Vec::new();
let value = normalize_with_depth_to(selcx, param_env, cause, depth, value, &mut obligations);
Normalized { value, obligations }
}
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
pub fn normalize_with_depth_to<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
value: T,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> T
where
T: TypeFoldable<'tcx>,
{
let mut normalizer = AssocTypeNormalizer::new(selcx, param_env, cause, depth, obligations);
let result = ensure_sufficient_stack(|| normalizer.fold(value));
debug!(?result, obligations.len = normalizer.obligations.len());
debug!(?normalizer.obligations,);
result
}
struct AssocTypeNormalizer<'a, 'b, 'tcx> {
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
obligations: &'a mut Vec<PredicateObligation<'tcx>>,
depth: usize,
}
impl<'a, 'b, 'tcx> AssocTypeNormalizer<'a, 'b, 'tcx> {
fn new(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
obligations: &'a mut Vec<PredicateObligation<'tcx>>,
) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
AssocTypeNormalizer { selcx, param_env, cause, obligations, depth }
}
fn fold<T: TypeFoldable<'tcx>>(&mut self, value: T) -> T {
let value = self.selcx.infcx().resolve_vars_if_possible(value);
if !value.has_projections() { value } else { value.fold_with(self) }
}
}
impl<'a, 'b, 'tcx> TypeFolder<'tcx> for AssocTypeNormalizer<'a, 'b, 'tcx> {
fn tcx<'c>(&'c self) -> TyCtxt<'tcx> {
self.selcx.tcx()
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if !ty.has_projections() {
return ty;
}
// We don't want to normalize associated types that occur inside of region
// binders, because they may contain bound regions, and we can't cope with that.
//
// Example:
//
// for<'a> fn(<T as Foo<&'a>>::A)
//
// Instead of normalizing `<T as Foo<&'a>>::A` here, we'll
// normalize it when we instantiate those bound regions (which
// should occur eventually).
let ty = ty.super_fold_with(self);
match *ty.kind() {
ty::Opaque(def_id, substs) if !substs.has_escaping_bound_vars() => {
// Only normalize `impl Trait` after type-checking, usually in codegen.
match self.param_env.reveal() {
Reveal::UserFacing => ty,
Reveal::All => {
let recursion_limit = self.tcx().sess.recursion_limit();
if !recursion_limit.value_within_limit(self.depth) {
let obligation = Obligation::with_depth(
self.cause.clone(),
recursion_limit.0,
self.param_env,
ty,
);
self.selcx.infcx().report_overflow_error(&obligation, true);
}
let generic_ty = self.tcx().type_of(def_id);
let concrete_ty = generic_ty.subst(self.tcx(), substs);
self.depth += 1;
let folded_ty = self.fold_ty(concrete_ty);
self.depth -= 1;
folded_ty
}
}
}
ty::Projection(data) if !data.has_escaping_bound_vars() => {
// This is kind of hacky -- we need to be able to
// handle normalization within binders because
// otherwise we wind up a need to normalize when doing
// trait matching (since you can have a trait
// obligation like `for<'a> T::B: Fn(&'a i32)`), but
// we can't normalize with bound regions in scope. So
// far now we just ignore binders but only normalize
// if all bound regions are gone (and then we still
// have to renormalize whenever we instantiate a
// binder). It would be better to normalize in a
// binding-aware fashion.
let normalized_ty = normalize_projection_type(
self.selcx,
self.param_env,
data,
self.cause.clone(),
self.depth,
&mut self.obligations,
);
debug!(
?self.depth,
?ty,
?normalized_ty,
obligations.len = ?self.obligations.len(),
"AssocTypeNormalizer: normalized type"
);
normalized_ty
}
_ => ty,
}
}
fn fold_const(&mut self, constant: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
if self.selcx.tcx().lazy_normalization() {
constant
} else {
let constant = constant.super_fold_with(self);
constant.eval(self.selcx.tcx(), self.param_env)
}
}
}
/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). If ambiguity arises, which implies that
/// there are unresolved type variables in the projection, we will
/// substitute a fresh type variable `$X` and generate a new
/// obligation `<T as Trait>::Item == $X` for later.
pub fn normalize_projection_type<'a, 'b, 'tcx>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Ty<'tcx> {
opt_normalize_projection_type(
selcx,
param_env,
projection_ty,
cause.clone(),
depth,
obligations,
)
.ok()
.flatten()
.unwrap_or_else(move || {
// if we bottom out in ambiguity, create a type variable
// and a deferred predicate to resolve this when more type
// information is available.
let tcx = selcx.infcx().tcx;
let def_id = projection_ty.item_def_id;
let ty_var = selcx.infcx().next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::NormalizeProjectionType,
span: tcx.def_span(def_id),
});
let projection = ty::Binder::dummy(ty::ProjectionPredicate { projection_ty, ty: ty_var });
let obligation =
Obligation::with_depth(cause, depth + 1, param_env, projection.to_predicate(tcx));
obligations.push(obligation);
ty_var
})
}
/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). Returns `None` in the case of ambiguity,
/// which indicates that there are unbound type variables.
///
/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
/// often immediately appended to another obligations vector. So now this
/// function takes an obligations vector and appends to it directly, which is
/// slightly uglier but avoids the need for an extra short-lived allocation.
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
fn opt_normalize_projection_type<'a, 'b, 'tcx>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Result<Option<Ty<'tcx>>, InProgress> {
let infcx = selcx.infcx();
let projection_ty = infcx.resolve_vars_if_possible(projection_ty);
let cache_key = ProjectionCacheKey::new(projection_ty);
// FIXME(#20304) For now, I am caching here, which is good, but it
// means we don't capture the type variables that are created in
// the case of ambiguity. Which means we may create a large stream
// of such variables. OTOH, if we move the caching up a level, we
// would not benefit from caching when proving `T: Trait<U=Foo>`
// bounds. It might be the case that we want two distinct caches,
// or else another kind of cache entry.
let cache_result = infcx.inner.borrow_mut().projection_cache().try_start(cache_key);
match cache_result {
Ok(()) => {}
Err(ProjectionCacheEntry::Ambiguous) => {
// If we found ambiguity the last time, that means we will continue
// to do so until some type in the key changes (and we know it
// hasn't, because we just fully resolved it).
debug!("found cache entry: ambiguous");
return Ok(None);
}
Err(ProjectionCacheEntry::InProgress) => {
// Under lazy normalization, this can arise when
// bootstrapping. That is, imagine an environment with a
// where-clause like `A::B == u32`. Now, if we are asked
// to normalize `A::B`, we will want to check the
// where-clauses in scope. So we will try to unify `A::B`
// with `A::B`, which can trigger a recursive
// normalization.
debug!("found cache entry: in-progress");
// Cache that normalizing this projection resulted in a cycle. This
// should ensure that, unless this happens within a snapshot that's
// rolled back, fulfillment or evaluation will notice the cycle.
infcx.inner.borrow_mut().projection_cache().recur(cache_key);
return Err(InProgress);
}
Err(ProjectionCacheEntry::Recur) => {
return Err(InProgress);
}
Err(ProjectionCacheEntry::NormalizedTy(ty)) => {
// This is the hottest path in this function.
//
// If we find the value in the cache, then return it along
// with the obligations that went along with it. Note
// that, when using a fulfillment context, these
// obligations could in principle be ignored: they have
// already been registered when the cache entry was
// created (and hence the new ones will quickly be
// discarded as duplicated). But when doing trait
// evaluation this is not the case, and dropping the trait
// evaluations can causes ICEs (e.g., #43132).
debug!(?ty, "found normalized ty");
// Once we have inferred everything we need to know, we
// can ignore the `obligations` from that point on.
if infcx.unresolved_type_vars(&ty.value).is_none() {
infcx.inner.borrow_mut().projection_cache().complete_normalized(cache_key, &ty);
// No need to extend `obligations`.
} else {
obligations.extend(ty.obligations);
}
return Ok(Some(ty.value));
}
Err(ProjectionCacheEntry::Error) => {
debug!("opt_normalize_projection_type: found error");
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
obligations.extend(result.obligations);
return Ok(Some(result.value));
}
}
let obligation = Obligation::with_depth(cause.clone(), depth, param_env, projection_ty);
match project_type(selcx, &obligation) {
Ok(ProjectedTy::Progress(Progress {
ty: projected_ty,
obligations: mut projected_obligations,
})) => {
// if projection succeeded, then what we get out of this
// is also non-normalized (consider: it was derived from
// an impl, where-clause etc) and hence we must
// re-normalize it
debug!(?projected_ty, ?depth, ?projected_obligations);
let result = if projected_ty.has_projections() {
let mut normalizer = AssocTypeNormalizer::new(
selcx,
param_env,
cause,
depth + 1,
&mut projected_obligations,
);
let normalized_ty = normalizer.fold(projected_ty);
debug!(?normalized_ty, ?depth);
Normalized { value: normalized_ty, obligations: projected_obligations }
} else {
Normalized { value: projected_ty, obligations: projected_obligations }
};
let cache_value = prune_cache_value_obligations(infcx, &result);
infcx.inner.borrow_mut().projection_cache().insert_ty(cache_key, cache_value);
obligations.extend(result.obligations);
Ok(Some(result.value))
}
Ok(ProjectedTy::NoProgress(projected_ty)) => {
debug!(?projected_ty, "opt_normalize_projection_type: no progress");
let result = Normalized { value: projected_ty, obligations: vec![] };
infcx.inner.borrow_mut().projection_cache().insert_ty(cache_key, result.clone());
// No need to extend `obligations`.
Ok(Some(result.value))
}
Err(ProjectionTyError::TooManyCandidates) => {
debug!("opt_normalize_projection_type: too many candidates");
infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
Ok(None)
}
Err(ProjectionTyError::TraitSelectionError(_)) => {
debug!("opt_normalize_projection_type: ERROR");
// if we got an error processing the `T as Trait` part,
// just return `ty::err` but add the obligation `T :
// Trait`, which when processed will cause the error to be
// reported later
infcx.inner.borrow_mut().projection_cache().error(cache_key);
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
obligations.extend(result.obligations);
Ok(Some(result.value))
}
}
}
/// If there are unresolved type variables, then we need to include
/// any subobligations that bind them, at least until those type
/// variables are fully resolved.
fn prune_cache_value_obligations<'a, 'tcx>(
infcx: &'a InferCtxt<'a, 'tcx>,
result: &NormalizedTy<'tcx>,
) -> NormalizedTy<'tcx> {
if infcx.unresolved_type_vars(&result.value).is_none() {
return NormalizedTy { value: result.value, obligations: vec![] };
}
let mut obligations: Vec<_> = result
.obligations
.iter()
.filter(|obligation| {
let bound_predicate = obligation.predicate.kind();
match bound_predicate.skip_binder() {
// We found a `T: Foo<X = U>` predicate, let's check
// if `U` references any unresolved type
// variables. In principle, we only care if this
// projection can help resolve any of the type
// variables found in `result.value` -- but we just
// check for any type variables here, for fear of
// indirect obligations (e.g., we project to `?0`,
// but we have `T: Foo<X = ?1>` and `?1: Bar<X =
// ?0>`).
ty::PredicateKind::Projection(data) => {
infcx.unresolved_type_vars(&bound_predicate.rebind(data.ty)).is_some()
}
// We are only interested in `T: Foo<X = U>` predicates, whre
// `U` references one of `unresolved_type_vars`. =)
_ => false,
}
})
.cloned()
.collect();
obligations.shrink_to_fit();
NormalizedTy { value: result.value, obligations }
}
/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
/// hold. In various error cases, we cannot generate a valid
/// normalized projection. Therefore, we create an inference variable
/// return an associated obligation that, when fulfilled, will lead to
/// an error.
///
/// Note that we used to return `Error` here, but that was quite
/// dubious -- the premise was that an error would *eventually* be
/// reported, when the obligation was processed. But in general once
/// you see a `Error` you are supposed to be able to assume that an
/// error *has been* reported, so that you can take whatever heuristic
/// paths you want to take. To make things worse, it was possible for
/// cycles to arise, where you basically had a setup like `<MyType<$0>
/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
/// Trait>::Foo> to `[type error]` would lead to an obligation of
/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
/// an error for this obligation, but we legitimately should not,
/// because it contains `[type error]`. Yuck! (See issue #29857 for
/// one case where this arose.)
fn normalize_to_error<'a, 'tcx>(
selcx: &mut SelectionContext<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
) -> NormalizedTy<'tcx> {
let trait_ref = projection_ty.trait_ref(selcx.tcx()).to_poly_trait_ref();
let trait_obligation = Obligation {
cause,
recursion_depth: depth,
param_env,
predicate: trait_ref.without_const().to_predicate(selcx.tcx()),
};
let tcx = selcx.infcx().tcx;
let def_id = projection_ty.item_def_id;
let new_value = selcx.infcx().next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::NormalizeProjectionType,
span: tcx.def_span(def_id),
});
Normalized { value: new_value, obligations: vec![trait_obligation] }
}
enum ProjectedTy<'tcx> {
Progress(Progress<'tcx>),
NoProgress(Ty<'tcx>),
}
struct Progress<'tcx> {
ty: Ty<'tcx>,
obligations: Vec<PredicateObligation<'tcx>>,
}
impl<'tcx> Progress<'tcx> {
fn error(tcx: TyCtxt<'tcx>) -> Self {
Progress { ty: tcx.ty_error(), obligations: vec![] }
}
fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
debug!(
self.obligations.len = ?self.obligations.len(),
obligations.len = obligations.len(),
"with_addl_obligations"
);
debug!(?self.obligations, ?obligations, "with_addl_obligations");
self.obligations.append(&mut obligations);
self
}
}
/// Computes the result of a projection type (if we can).
///
/// IMPORTANT:
/// - `obligation` must be fully normalized
fn project_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
) -> Result<ProjectedTy<'tcx>, ProjectionTyError<'tcx>> {
debug!(?obligation, "project_type");
if !selcx.tcx().sess.recursion_limit().value_within_limit(obligation.recursion_depth) {
debug!("project: overflow!");
// This should really be an immediate error, but some existing code
// relies on being able to recover from this.
return Err(ProjectionTyError::TraitSelectionError(SelectionError::Overflow));
}
if obligation.predicate.references_error() {
return Ok(ProjectedTy::Progress(Progress::error(selcx.tcx())));
}
let mut candidates = ProjectionTyCandidateSet::None;
// Make sure that the following procedures are kept in order. ParamEnv
// needs to be first because it has highest priority, and Select checks
// the return value of push_candidate which assumes it's ran at last.
assemble_candidates_from_param_env(selcx, obligation, &mut candidates);
assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);
assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);
if let ProjectionTyCandidateSet::Single(ProjectionTyCandidate::Object(_)) = candidates {
// Avoid normalization cycle from selection (see
// `assemble_candidates_from_object_ty`).
// FIXME(lazy_normalization): Lazy normalization should save us from
// having to special case this.
} else {
assemble_candidates_from_impls(selcx, obligation, &mut candidates);
};
match candidates {
ProjectionTyCandidateSet::Single(candidate) => {
Ok(ProjectedTy::Progress(confirm_candidate(selcx, obligation, candidate)))
}
ProjectionTyCandidateSet::None => Ok(ProjectedTy::NoProgress(
selcx
.tcx()
.mk_projection(obligation.predicate.item_def_id, obligation.predicate.substs),
)),
// Error occurred while trying to processing impls.
ProjectionTyCandidateSet::Error(e) => Err(ProjectionTyError::TraitSelectionError(e)),
// Inherent ambiguity that prevents us from even enumerating the
// candidates.
ProjectionTyCandidateSet::Ambiguous => Err(ProjectionTyError::TooManyCandidates),
}
}
/// The first thing we have to do is scan through the parameter
/// environment to see whether there are any projection predicates
/// there that can answer this question.
fn assemble_candidates_from_param_env<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_param_env(..)");
assemble_candidates_from_predicates(
selcx,
obligation,
candidate_set,
ProjectionTyCandidate::ParamEnv,
obligation.param_env.caller_bounds().iter(),
false,
);
}
/// In the case of a nested projection like <<A as Foo>::FooT as Bar>::BarT, we may find
/// that the definition of `Foo` has some clues:
///
/// ```
/// trait Foo {
/// type FooT : Bar<BarT=i32>
/// }
/// ```
///
/// Here, for example, we could conclude that the result is `i32`.
fn assemble_candidates_from_trait_def<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_trait_def(..)");
let tcx = selcx.tcx();
// Check whether the self-type is itself a projection.
// If so, extract what we know from the trait and try to come up with a good answer.
let bounds = match *obligation.predicate.self_ty().kind() {
ty::Projection(ref data) => tcx.item_bounds(data.item_def_id).subst(tcx, data.substs),
ty::Opaque(def_id, substs) => tcx.item_bounds(def_id).subst(tcx, substs),
ty::Infer(ty::TyVar(_)) => {
// If the self-type is an inference variable, then it MAY wind up
// being a projected type, so induce an ambiguity.
candidate_set.mark_ambiguous();
return;
}
_ => return,
};
assemble_candidates_from_predicates(
selcx,
obligation,
candidate_set,
ProjectionTyCandidate::TraitDef,
bounds.iter(),
true,
)
}
/// In the case of a trait object like
/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
/// predicate in the trait object.
///
/// We don't go through the select candidate for these bounds to avoid cycles:
/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
/// this then has to be normalized without having to prove
/// `dyn Iterator<Item = ()>: Iterator` again.
fn assemble_candidates_from_object_ty<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_object_ty(..)");
let tcx = selcx.tcx();
let self_ty = obligation.predicate.self_ty();
let object_ty = selcx.infcx().shallow_resolve(self_ty);
let data = match object_ty.kind() {
ty::Dynamic(data, ..) => data,
ty::Infer(ty::TyVar(_)) => {
// If the self-type is an inference variable, then it MAY wind up
// being an object type, so induce an ambiguity.
candidate_set.mark_ambiguous();
return;
}
_ => return,
};
let env_predicates = data
.projection_bounds()
.filter(|bound| bound.item_def_id() == obligation.predicate.item_def_id)
.map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));
assemble_candidates_from_predicates(
selcx,
obligation,
candidate_set,
ProjectionTyCandidate::Object,
env_predicates,
false,
);
}
fn assemble_candidates_from_predicates<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionTyCandidate<'tcx>,
env_predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
potentially_unnormalized_candidates: bool,
) {
debug!(?obligation, "assemble_candidates_from_predicates");
let infcx = selcx.infcx();
for predicate in env_predicates {
debug!(?predicate);
let bound_predicate = predicate.kind();
if let ty::PredicateKind::Projection(data) = predicate.kind().skip_binder() {
let data = bound_predicate.rebind(data);
let same_def_id = data.projection_def_id() == obligation.predicate.item_def_id;
let is_match = same_def_id
&& infcx.probe(|_| {
selcx.match_projection_projections(
obligation,
data,
potentially_unnormalized_candidates,
)
});
debug!(?data, ?is_match, ?same_def_id);
if is_match {
candidate_set.push_candidate(ctor(data));
if potentially_unnormalized_candidates
&& !obligation.predicate.has_infer_types_or_consts()
{
// HACK: Pick the first trait def candidate for a fully
// inferred predicate. This is to allow duplicates that
// differ only in normalization.
return;
}
}
}
}
}
fn assemble_candidates_from_impls<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_impls");
// If we are resolving `<T as TraitRef<...>>::Item == Type`,
// start out by selecting the predicate `T as TraitRef<...>`:
let poly_trait_ref = obligation.predicate.trait_ref(selcx.tcx()).to_poly_trait_ref();
let trait_obligation = obligation.with(poly_trait_ref.to_poly_trait_predicate());
let _ = selcx.infcx().commit_if_ok(|_| {
let impl_source = match selcx.select(&trait_obligation) {
Ok(Some(impl_source)) => impl_source,
Ok(None) => {
candidate_set.mark_ambiguous();
return Err(());
}
Err(e) => {
debug!(error = ?e, "selection error");
candidate_set.mark_error(e);
return Err(());
}
};
let eligible = match &impl_source {
super::ImplSource::Closure(_)
| super::ImplSource::Generator(_)
| super::ImplSource::FnPointer(_)
| super::ImplSource::TraitAlias(_) => {
debug!(?impl_source);
true
}
super::ImplSource::UserDefined(impl_data) => {
// We have to be careful when projecting out of an
// impl because of specialization. If we are not in
// codegen (i.e., projection mode is not "any"), and the
// impl's type is declared as default, then we disable
// projection (even if the trait ref is fully
// monomorphic). In the case where trait ref is not
// fully monomorphic (i.e., includes type parameters),
// this is because those type parameters may
// ultimately be bound to types from other crates that
// may have specialized impls we can't see. In the
// case where the trait ref IS fully monomorphic, this
// is a policy decision that we made in the RFC in
// order to preserve flexibility for the crate that
// defined the specializable impl to specialize later
// for existing types.
//
// In either case, we handle this by not adding a
// candidate for an impl if it contains a `default`
// type.
//
// NOTE: This should be kept in sync with the similar code in
// `rustc_ty_utils::instance::resolve_associated_item()`.
let node_item =
assoc_ty_def(selcx, impl_data.impl_def_id, obligation.predicate.item_def_id)
.map_err(|ErrorReported| ())?;
if node_item.is_final() {
// Non-specializable items are always projectable.
true
} else {
// Only reveal a specializable default if we're past type-checking