-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathmod.rs
4915 lines (4727 loc) · 174 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Slice management and manipulation.
//!
//! For more details see [`std::slice`].
//!
//! [`std::slice`]: ../../std/slice/index.html
#![stable(feature = "rust1", since = "1.0.0")]
use crate::cmp::Ordering::{self, Equal, Greater, Less};
use crate::intrinsics::{exact_div, select_unpredictable, unchecked_sub};
use crate::mem::{self, SizedTypeProperties};
use crate::num::NonZero;
use crate::ops::{Bound, OneSidedRange, Range, RangeBounds};
use crate::simd::{self, Simd};
use crate::ub_checks::assert_unsafe_precondition;
use crate::{fmt, hint, ptr, slice};
#[unstable(
feature = "slice_internals",
issue = "none",
reason = "exposed from core to be reused in std; use the memchr crate"
)]
/// Pure Rust memchr implementation, taken from rust-memchr
pub mod memchr;
#[unstable(
feature = "slice_internals",
issue = "none",
reason = "exposed from core to be reused in std;"
)]
#[doc(hidden)]
pub mod sort;
mod ascii;
mod cmp;
pub(crate) mod index;
mod iter;
mod raw;
mod rotate;
mod specialize;
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
pub use ascii::EscapeAscii;
#[unstable(feature = "str_internals", issue = "none")]
#[doc(hidden)]
pub use ascii::is_ascii_simple;
#[stable(feature = "slice_get_slice", since = "1.28.0")]
pub use index::SliceIndex;
#[unstable(feature = "slice_range", issue = "76393")]
pub use index::{range, try_range};
#[unstable(feature = "array_windows", issue = "75027")]
pub use iter::ArrayWindows;
#[unstable(feature = "array_chunks", issue = "74985")]
pub use iter::{ArrayChunks, ArrayChunksMut};
#[stable(feature = "slice_group_by", since = "1.77.0")]
pub use iter::{ChunkBy, ChunkByMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use iter::{Chunks, ChunksMut, Windows};
#[stable(feature = "chunks_exact", since = "1.31.0")]
pub use iter::{ChunksExact, ChunksExactMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use iter::{Iter, IterMut};
#[stable(feature = "rchunks", since = "1.31.0")]
pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
#[stable(feature = "slice_rsplit", since = "1.27.0")]
pub use iter::{RSplit, RSplitMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
#[stable(feature = "split_inclusive", since = "1.51.0")]
pub use iter::{SplitInclusive, SplitInclusiveMut};
#[stable(feature = "from_ref", since = "1.28.0")]
pub use raw::{from_mut, from_ref};
#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
pub use raw::{from_mut_ptr_range, from_ptr_range};
#[stable(feature = "rust1", since = "1.0.0")]
pub use raw::{from_raw_parts, from_raw_parts_mut};
/// Calculates the direction and split point of a one-sided range.
///
/// This is a helper function for `take` and `take_mut` that returns
/// the direction of the split (front or back) as well as the index at
/// which to split. Returns `None` if the split index would overflow.
#[inline]
fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
use Bound::*;
Some(match (range.start_bound(), range.end_bound()) {
(Unbounded, Excluded(i)) => (Direction::Front, *i),
(Unbounded, Included(i)) => (Direction::Front, i.checked_add(1)?),
(Excluded(i), Unbounded) => (Direction::Back, i.checked_add(1)?),
(Included(i), Unbounded) => (Direction::Back, *i),
_ => unreachable!(),
})
}
enum Direction {
Front,
Back,
}
#[cfg(not(test))]
impl<T> [T] {
/// Returns the number of elements in the slice.
///
/// # Examples
///
/// ```
/// let a = [1, 2, 3];
/// assert_eq!(a.len(), 3);
/// ```
#[lang = "slice_len_fn"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
#[rustc_allow_const_fn_unstable(ptr_metadata)]
#[inline]
#[must_use]
pub const fn len(&self) -> usize {
ptr::metadata(self)
}
/// Returns `true` if the slice has a length of 0.
///
/// # Examples
///
/// ```
/// let a = [1, 2, 3];
/// assert!(!a.is_empty());
///
/// let b: &[i32] = &[];
/// assert!(b.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
#[inline]
#[must_use]
pub const fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the first element of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&10), v.first());
///
/// let w: &[i32] = &[];
/// assert_eq!(None, w.first());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
#[inline]
#[must_use]
pub const fn first(&self) -> Option<&T> {
if let [first, ..] = self { Some(first) } else { None }
}
/// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some(first) = x.first_mut() {
/// *first = 5;
/// }
/// assert_eq!(x, &[5, 1, 2]);
///
/// let y: &mut [i32] = &mut [];
/// assert_eq!(None, y.first_mut());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
#[inline]
#[must_use]
pub const fn first_mut(&mut self) -> Option<&mut T> {
if let [first, ..] = self { Some(first) } else { None }
}
/// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &[0, 1, 2];
///
/// if let Some((first, elements)) = x.split_first() {
/// assert_eq!(first, &0);
/// assert_eq!(elements, &[1, 2]);
/// }
/// ```
#[stable(feature = "slice_splits", since = "1.5.0")]
#[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
#[inline]
#[must_use]
pub const fn split_first(&self) -> Option<(&T, &[T])> {
if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
}
/// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some((first, elements)) = x.split_first_mut() {
/// *first = 3;
/// elements[0] = 4;
/// elements[1] = 5;
/// }
/// assert_eq!(x, &[3, 4, 5]);
/// ```
#[stable(feature = "slice_splits", since = "1.5.0")]
#[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
#[inline]
#[must_use]
pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
}
/// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &[0, 1, 2];
///
/// if let Some((last, elements)) = x.split_last() {
/// assert_eq!(last, &2);
/// assert_eq!(elements, &[0, 1]);
/// }
/// ```
#[stable(feature = "slice_splits", since = "1.5.0")]
#[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
#[inline]
#[must_use]
pub const fn split_last(&self) -> Option<(&T, &[T])> {
if let [init @ .., last] = self { Some((last, init)) } else { None }
}
/// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some((last, elements)) = x.split_last_mut() {
/// *last = 3;
/// elements[0] = 4;
/// elements[1] = 5;
/// }
/// assert_eq!(x, &[4, 5, 3]);
/// ```
#[stable(feature = "slice_splits", since = "1.5.0")]
#[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
#[inline]
#[must_use]
pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
if let [init @ .., last] = self { Some((last, init)) } else { None }
}
/// Returns the last element of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&30), v.last());
///
/// let w: &[i32] = &[];
/// assert_eq!(None, w.last());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
#[inline]
#[must_use]
pub const fn last(&self) -> Option<&T> {
if let [.., last] = self { Some(last) } else { None }
}
/// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some(last) = x.last_mut() {
/// *last = 10;
/// }
/// assert_eq!(x, &[0, 1, 10]);
///
/// let y: &mut [i32] = &mut [];
/// assert_eq!(None, y.last_mut());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
#[inline]
#[must_use]
pub const fn last_mut(&mut self) -> Option<&mut T> {
if let [.., last] = self { Some(last) } else { None }
}
/// Returns an array reference to the first `N` items in the slice.
///
/// If the slice is not at least `N` in length, this will return `None`.
///
/// # Examples
///
/// ```
/// let u = [10, 40, 30];
/// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
///
/// let v: &[i32] = &[10];
/// assert_eq!(None, v.first_chunk::<2>());
///
/// let w: &[i32] = &[];
/// assert_eq!(Some(&[]), w.first_chunk::<0>());
/// ```
#[inline]
#[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
#[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
if self.len() < N {
None
} else {
// SAFETY: We explicitly check for the correct number of elements,
// and do not let the reference outlive the slice.
Some(unsafe { &*(self.as_ptr().cast::<[T; N]>()) })
}
}
/// Returns a mutable array reference to the first `N` items in the slice.
///
/// If the slice is not at least `N` in length, this will return `None`.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some(first) = x.first_chunk_mut::<2>() {
/// first[0] = 5;
/// first[1] = 4;
/// }
/// assert_eq!(x, &[5, 4, 2]);
///
/// assert_eq!(None, x.first_chunk_mut::<4>());
/// ```
#[inline]
#[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
#[rustc_const_unstable(feature = "const_slice_first_last_chunk", issue = "111774")]
pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
if self.len() < N {
None
} else {
// SAFETY: We explicitly check for the correct number of elements,
// do not let the reference outlive the slice,
// and require exclusive access to the entire slice to mutate the chunk.
Some(unsafe { &mut *(self.as_mut_ptr().cast::<[T; N]>()) })
}
}
/// Returns an array reference to the first `N` items in the slice and the remaining slice.
///
/// If the slice is not at least `N` in length, this will return `None`.
///
/// # Examples
///
/// ```
/// let x = &[0, 1, 2];
///
/// if let Some((first, elements)) = x.split_first_chunk::<2>() {
/// assert_eq!(first, &[0, 1]);
/// assert_eq!(elements, &[2]);
/// }
///
/// assert_eq!(None, x.split_first_chunk::<4>());
/// ```
#[inline]
#[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
#[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
if self.len() < N {
None
} else {
// SAFETY: We manually verified the bounds of the split.
let (first, tail) = unsafe { self.split_at_unchecked(N) };
// SAFETY: We explicitly check for the correct number of elements,
// and do not let the references outlive the slice.
Some((unsafe { &*(first.as_ptr().cast::<[T; N]>()) }, tail))
}
}
/// Returns a mutable array reference to the first `N` items in the slice and the remaining
/// slice.
///
/// If the slice is not at least `N` in length, this will return `None`.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
/// first[0] = 3;
/// first[1] = 4;
/// elements[0] = 5;
/// }
/// assert_eq!(x, &[3, 4, 5]);
///
/// assert_eq!(None, x.split_first_chunk_mut::<4>());
/// ```
#[inline]
#[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
#[rustc_const_unstable(feature = "const_slice_first_last_chunk", issue = "111774")]
pub const fn split_first_chunk_mut<const N: usize>(
&mut self,
) -> Option<(&mut [T; N], &mut [T])> {
if self.len() < N {
None
} else {
// SAFETY: We manually verified the bounds of the split.
let (first, tail) = unsafe { self.split_at_mut_unchecked(N) };
// SAFETY: We explicitly check for the correct number of elements,
// do not let the reference outlive the slice,
// and enforce exclusive mutability of the chunk by the split.
Some((unsafe { &mut *(first.as_mut_ptr().cast::<[T; N]>()) }, tail))
}
}
/// Returns an array reference to the last `N` items in the slice and the remaining slice.
///
/// If the slice is not at least `N` in length, this will return `None`.
///
/// # Examples
///
/// ```
/// let x = &[0, 1, 2];
///
/// if let Some((elements, last)) = x.split_last_chunk::<2>() {
/// assert_eq!(elements, &[0]);
/// assert_eq!(last, &[1, 2]);
/// }
///
/// assert_eq!(None, x.split_last_chunk::<4>());
/// ```
#[inline]
#[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
#[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
if self.len() < N {
None
} else {
// SAFETY: We manually verified the bounds of the split.
let (init, last) = unsafe { self.split_at_unchecked(self.len() - N) };
// SAFETY: We explicitly check for the correct number of elements,
// and do not let the references outlive the slice.
Some((init, unsafe { &*(last.as_ptr().cast::<[T; N]>()) }))
}
}
/// Returns a mutable array reference to the last `N` items in the slice and the remaining
/// slice.
///
/// If the slice is not at least `N` in length, this will return `None`.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
/// last[0] = 3;
/// last[1] = 4;
/// elements[0] = 5;
/// }
/// assert_eq!(x, &[5, 3, 4]);
///
/// assert_eq!(None, x.split_last_chunk_mut::<4>());
/// ```
#[inline]
#[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
#[rustc_const_unstable(feature = "const_slice_first_last_chunk", issue = "111774")]
pub const fn split_last_chunk_mut<const N: usize>(
&mut self,
) -> Option<(&mut [T], &mut [T; N])> {
if self.len() < N {
None
} else {
// SAFETY: We manually verified the bounds of the split.
let (init, last) = unsafe { self.split_at_mut_unchecked(self.len() - N) };
// SAFETY: We explicitly check for the correct number of elements,
// do not let the reference outlive the slice,
// and enforce exclusive mutability of the chunk by the split.
Some((init, unsafe { &mut *(last.as_mut_ptr().cast::<[T; N]>()) }))
}
}
/// Returns an array reference to the last `N` items in the slice.
///
/// If the slice is not at least `N` in length, this will return `None`.
///
/// # Examples
///
/// ```
/// let u = [10, 40, 30];
/// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
///
/// let v: &[i32] = &[10];
/// assert_eq!(None, v.last_chunk::<2>());
///
/// let w: &[i32] = &[];
/// assert_eq!(Some(&[]), w.last_chunk::<0>());
/// ```
#[inline]
#[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
#[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
if self.len() < N {
None
} else {
// SAFETY: We manually verified the bounds of the slice.
// FIXME(const-hack): Without const traits, we need this instead of `get_unchecked`.
let last = unsafe { self.split_at_unchecked(self.len() - N).1 };
// SAFETY: We explicitly check for the correct number of elements,
// and do not let the references outlive the slice.
Some(unsafe { &*(last.as_ptr().cast::<[T; N]>()) })
}
}
/// Returns a mutable array reference to the last `N` items in the slice.
///
/// If the slice is not at least `N` in length, this will return `None`.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some(last) = x.last_chunk_mut::<2>() {
/// last[0] = 10;
/// last[1] = 20;
/// }
/// assert_eq!(x, &[0, 10, 20]);
///
/// assert_eq!(None, x.last_chunk_mut::<4>());
/// ```
#[inline]
#[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
#[rustc_const_unstable(feature = "const_slice_first_last_chunk", issue = "111774")]
pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
if self.len() < N {
None
} else {
// SAFETY: We manually verified the bounds of the slice.
// FIXME(const-hack): Without const traits, we need this instead of `get_unchecked`.
let last = unsafe { self.split_at_mut_unchecked(self.len() - N).1 };
// SAFETY: We explicitly check for the correct number of elements,
// do not let the reference outlive the slice,
// and require exclusive access to the entire slice to mutate the chunk.
Some(unsafe { &mut *(last.as_mut_ptr().cast::<[T; N]>()) })
}
}
/// Returns a reference to an element or subslice depending on the type of
/// index.
///
/// - If given a position, returns a reference to the element at that
/// position or `None` if out of bounds.
/// - If given a range, returns the subslice corresponding to that range,
/// or `None` if out of bounds.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&40), v.get(1));
/// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
/// assert_eq!(None, v.get(3));
/// assert_eq!(None, v.get(0..4));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[must_use]
pub fn get<I>(&self, index: I) -> Option<&I::Output>
where
I: SliceIndex<Self>,
{
index.get(self)
}
/// Returns a mutable reference to an element or subslice depending on the
/// type of index (see [`get`]) or `None` if the index is out of bounds.
///
/// [`get`]: slice::get
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some(elem) = x.get_mut(1) {
/// *elem = 42;
/// }
/// assert_eq!(x, &[0, 42, 2]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[must_use]
pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
where
I: SliceIndex<Self>,
{
index.get_mut(self)
}
/// Returns a reference to an element or subslice, without doing bounds
/// checking.
///
/// For a safe alternative see [`get`].
///
/// # Safety
///
/// Calling this method with an out-of-bounds index is *[undefined behavior]*
/// even if the resulting reference is not used.
///
/// You can think of this like `.get(index).unwrap_unchecked()`. It's UB
/// to call `.get_unchecked(len)`, even if you immediately convert to a
/// pointer. And it's UB to call `.get_unchecked(..len + 1)`,
/// `.get_unchecked(..=len)`, or similar.
///
/// [`get`]: slice::get
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// let x = &[1, 2, 4];
///
/// unsafe {
/// assert_eq!(x.get_unchecked(1), &2);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[must_use]
pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
where
I: SliceIndex<Self>,
{
// SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
// the slice is dereferenceable because `self` is a safe reference.
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
unsafe { &*index.get_unchecked(self) }
}
/// Returns a mutable reference to an element or subslice, without doing
/// bounds checking.
///
/// For a safe alternative see [`get_mut`].
///
/// # Safety
///
/// Calling this method with an out-of-bounds index is *[undefined behavior]*
/// even if the resulting reference is not used.
///
/// You can think of this like `.get_mut(index).unwrap_unchecked()`. It's
/// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
/// to a pointer. And it's UB to call `.get_unchecked_mut(..len + 1)`,
/// `.get_unchecked_mut(..=len)`, or similar.
///
/// [`get_mut`]: slice::get_mut
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// let x = &mut [1, 2, 4];
///
/// unsafe {
/// let elem = x.get_unchecked_mut(1);
/// *elem = 13;
/// }
/// assert_eq!(x, &[1, 13, 4]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[must_use]
pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
where
I: SliceIndex<Self>,
{
// SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
// the slice is dereferenceable because `self` is a safe reference.
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
unsafe { &mut *index.get_unchecked_mut(self) }
}
/// Returns a raw pointer to the slice's buffer.
///
/// The caller must ensure that the slice outlives the pointer this
/// function returns, or else it will end up dangling.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to
/// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
/// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
///
/// Modifying the container referenced by this slice may cause its buffer
/// to be reallocated, which would also make any pointers to it invalid.
///
/// # Examples
///
/// ```
/// let x = &[1, 2, 4];
/// let x_ptr = x.as_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
/// }
/// }
/// ```
///
/// [`as_mut_ptr`]: slice::as_mut_ptr
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
#[rustc_never_returns_null_ptr]
#[inline(always)]
#[must_use]
pub const fn as_ptr(&self) -> *const T {
self as *const [T] as *const T
}
/// Returns an unsafe mutable pointer to the slice's buffer.
///
/// The caller must ensure that the slice outlives the pointer this
/// function returns, or else it will end up dangling.
///
/// Modifying the container referenced by this slice may cause its buffer
/// to be reallocated, which would also make any pointers to it invalid.
///
/// # Examples
///
/// ```
/// let x = &mut [1, 2, 4];
/// let x_ptr = x.as_mut_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// *x_ptr.add(i) += 2;
/// }
/// }
/// assert_eq!(x, &[3, 4, 6]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[rustc_allow_const_fn_unstable(const_mut_refs)]
#[rustc_never_returns_null_ptr]
#[inline(always)]
#[must_use]
pub const fn as_mut_ptr(&mut self) -> *mut T {
self as *mut [T] as *mut T
}
/// Returns the two raw pointers spanning the slice.
///
/// The returned range is half-open, which means that the end pointer
/// points *one past* the last element of the slice. This way, an empty
/// slice is represented by two equal pointers, and the difference between
/// the two pointers represents the size of the slice.
///
/// See [`as_ptr`] for warnings on using these pointers. The end pointer
/// requires extra caution, as it does not point to a valid element in the
/// slice.
///
/// This function is useful for interacting with foreign interfaces which
/// use two pointers to refer to a range of elements in memory, as is
/// common in C++.
///
/// It can also be useful to check if a pointer to an element refers to an
/// element of this slice:
///
/// ```
/// let a = [1, 2, 3];
/// let x = &a[1] as *const _;
/// let y = &5 as *const _;
///
/// assert!(a.as_ptr_range().contains(&x));
/// assert!(!a.as_ptr_range().contains(&y));
/// ```
///
/// [`as_ptr`]: slice::as_ptr
#[stable(feature = "slice_ptr_range", since = "1.48.0")]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline]
#[must_use]
pub const fn as_ptr_range(&self) -> Range<*const T> {
let start = self.as_ptr();
// SAFETY: The `add` here is safe, because:
//
// - Both pointers are part of the same object, as pointing directly
// past the object also counts.
//
// - The size of the slice is never larger than `isize::MAX` bytes, as
// noted here:
// - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
// - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
// - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
// (This doesn't seem normative yet, but the very same assumption is
// made in many places, including the Index implementation of slices.)
//
// - There is no wrapping around involved, as slices do not wrap past
// the end of the address space.
//
// See the documentation of [`pointer::add`].
let end = unsafe { start.add(self.len()) };
start..end
}
/// Returns the two unsafe mutable pointers spanning the slice.
///
/// The returned range is half-open, which means that the end pointer
/// points *one past* the last element of the slice. This way, an empty
/// slice is represented by two equal pointers, and the difference between
/// the two pointers represents the size of the slice.
///
/// See [`as_mut_ptr`] for warnings on using these pointers. The end
/// pointer requires extra caution, as it does not point to a valid element
/// in the slice.
///
/// This function is useful for interacting with foreign interfaces which
/// use two pointers to refer to a range of elements in memory, as is
/// common in C++.
///
/// [`as_mut_ptr`]: slice::as_mut_ptr
#[stable(feature = "slice_ptr_range", since = "1.48.0")]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[cfg_attr(bootstrap, rustc_allow_const_fn_unstable(const_mut_refs, const_refs_to_cell))]
#[inline]
#[must_use]
pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
let start = self.as_mut_ptr();
// SAFETY: See as_ptr_range() above for why `add` here is safe.
let end = unsafe { start.add(self.len()) };
start..end
}
/// Swaps two elements in the slice.
///
/// If `a` equals to `b`, it's guaranteed that elements won't change value.
///
/// # Arguments
///
/// * a - The index of the first element
/// * b - The index of the second element
///
/// # Panics
///
/// Panics if `a` or `b` are out of bounds.
///
/// # Examples
///
/// ```
/// let mut v = ["a", "b", "c", "d", "e"];
/// v.swap(2, 4);
/// assert!(v == ["a", "b", "e", "d", "c"]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
#[inline]
#[track_caller]
pub const fn swap(&mut self, a: usize, b: usize) {
// FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
// Can't take two mutable loans from one vector, so instead use raw pointers.
let pa = &raw mut self[a];
let pb = &raw mut self[b];
// SAFETY: `pa` and `pb` have been created from safe mutable references and refer
// to elements in the slice and therefore are guaranteed to be valid and aligned.
// Note that accessing the elements behind `a` and `b` is checked and will
// panic when out of bounds.
unsafe {
ptr::swap(pa, pb);
}
}
/// Swaps two elements in the slice, without doing bounds checking.
///
/// For a safe alternative see [`swap`].
///
/// # Arguments
///
/// * a - The index of the first element
/// * b - The index of the second element
///
/// # Safety
///
/// Calling this method with an out-of-bounds index is *[undefined behavior]*.
/// The caller has to ensure that `a < self.len()` and `b < self.len()`.
///
/// # Examples
///
/// ```
/// #![feature(slice_swap_unchecked)]
///
/// let mut v = ["a", "b", "c", "d"];
/// // SAFETY: we know that 1 and 3 are both indices of the slice
/// unsafe { v.swap_unchecked(1, 3) };
/// assert!(v == ["a", "d", "c", "b"]);
/// ```
///
/// [`swap`]: slice::swap
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[unstable(feature = "slice_swap_unchecked", issue = "88539")]
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
assert_unsafe_precondition!(
check_library_ub,
"slice::swap_unchecked requires that the indices are within the slice",
(
len: usize = self.len(),
a: usize = a,
b: usize = b,
) => a < len && b < len,
);
let ptr = self.as_mut_ptr();
// SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
unsafe {
ptr::swap(ptr.add(a), ptr.add(b));
}
}
/// Reverses the order of elements in the slice, in place.
///
/// # Examples
///
/// ```
/// let mut v = [1, 2, 3];
/// v.reverse();
/// assert!(v == [3, 2, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn reverse(&mut self) {
let half_len = self.len() / 2;
let Range { start, end } = self.as_mut_ptr_range();
// These slices will skip the middle item for an odd length,
// since that one doesn't need to move.
let (front_half, back_half) =
// SAFETY: Both are subparts of the original slice, so the memory
// range is valid, and they don't overlap because they're each only
// half (or less) of the original slice.
unsafe {
(
slice::from_raw_parts_mut(start, half_len),
slice::from_raw_parts_mut(end.sub(half_len), half_len),
)
};
// Introducing a function boundary here means that the two halves
// get `noalias` markers, allowing better optimization as LLVM
// knows that they're disjoint, unlike in the original slice.
revswap(front_half, back_half, half_len);
#[inline]
fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
debug_assert!(a.len() == n);
debug_assert!(b.len() == n);
// Because this function is first compiled in isolation,
// this check tells LLVM that the indexing below is
// in-bounds. Then after inlining -- once the actual
// lengths of the slices are known -- it's removed.
let (a, b) = (&mut a[..n], &mut b[..n]);
let mut i = 0;
while i < n {
mem::swap(&mut a[i], &mut b[n - 1 - i]);
i += 1;
}
}
}
/// Returns an iterator over the slice.
///
/// The iterator yields all items from start to end.
///
/// # Examples