-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathpp.rs
542 lines (485 loc) · 18.3 KB
/
pp.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import std::io;
import std::vec;
import std::str;
/*
* This pretty-printer is a direct reimplementation of Philip Karlton's
* Mesa pretty-printer, as described in appendix A of
*
* STAN-CS-79-770: "Pretty Printing", by Derek C. Oppen.
* Stanford Department of Computer Science, 1979.
*
* The algorithm's aim is to break a stream into as few lines as possible
* while respecting the indentation-consistency requirements of the enclosing
* block, and avoiding breaking at silly places on block boundaries, for
* example, between "x" and ")" in "x)".
*
* I am implementing this algorithm because it comes with 20 pages of
* documentation explaining its theory, and because it addresses the set of
* concerns I've seen other pretty-printers fall down on. Weirdly. Even though
* it's 32 years old and not written in Haskell. What can I say?
*
* Despite some redundancies and quirks in the way it's implemented in that
* paper, I've opted to keep the implementation here as similar as I can,
* changing only what was blatantly wrong, a typo, or sufficiently
* non-idiomatic rust that it really stuck out.
*
* In particular you'll see a certain amount of churn related to INTEGER vs.
* CARDINAL in the Mesa implementation. Mesa apparently interconverts the two
* somewhat readily? In any case, I've used uint for indices-in-buffers and
* ints for character-sizes-and-indentation-offsets. This respects the need
* for ints to "go negative" while carrying a pending-calculation balance, and
* helps differentiate all the numbers flying around internally (slightly).
*
* I also inverted the indentation arithmetic used in the print stack, since
* the Mesa implementation (somewhat randomly) stores the offset on the print
* stack in terms of margin-col rather than col itself. I store col.
*/
tag breaks { consistent; inconsistent; }
type break_t = rec(int offset, int blank_space);
type begin_t = rec(int offset, breaks breaks);
tag token {
STRING(str);
BREAK(break_t);
BEGIN(begin_t);
END;
EOF;
}
fn tok_str(token t) -> str {
alt (t) {
case (STRING(?s)) { ret "STR(" + s + ")"; }
case (BREAK(_)) { ret "BREAK"; }
case (BEGIN(_)) { ret "BEGIN"; }
case (END) { ret "END"; }
case (EOF) { ret "EOF"; }
}
}
fn buf_str(vec[token] toks, vec[int] szs,
uint left, uint right, uint lim) -> str {
auto n = vec::len(toks);
assert n == vec::len(szs);
auto i = left;
auto L = lim;
auto s = "[";
while (i != right && L != 0u) {
L -= 1u;
if (i != left) {
s += ", ";
}
s += #fmt("%d=%s", szs.(i), tok_str(toks.(i)));
i += 1u;
i %= n;
}
s += "]";
ret s;
}
tag print_stack_break { fits; broken(breaks); }
type print_stack_elt = rec(int offset, print_stack_break pbreak);
const int size_infinity = 0xffff;
fn mk_printer(io::writer out, uint linewidth) -> printer {
// Yes 3, it makes the ring buffers big enough to never
// fall behind.
let uint n = 3u * linewidth;
log #fmt("mk_printer %u", linewidth);
let vec[token] token = vec::init_elt[token](EOF, n);
let vec[int] size = vec::init_elt[int](0, n);
let vec[uint] scan_stack = vec::init_elt[uint](0u, n);
let vec[print_stack_elt] print_stack = [];
ret printer(out,
n,
linewidth as int, // margin
linewidth as int, // space
0u, // left
0u, // right
token,
size,
0, // left_total
0, // right_total
scan_stack,
true, // scan_stack_empty
0u, // top
0u, // bottom
print_stack);
}
/*
* In case you do not have the paper, here is an explanation of what's going
* on.
*
* There is a stream of input tokens flowing through this printer.
*
* The printer buffers up to 3N tokens inside itself, where N is linewidth.
* Yes, linewidth is chars and tokens are multi-char, but in the worst
* case every token worth buffering is 1 char long, so it's ok.
*
* Tokens are STRING, BREAK, and BEGIN/END to delimit blocks.
*
* BEGIN tokens can carry an offset, saying "how far to indent when you break
* inside here", as well as a flag indicating "consistent" or "inconsistent"
* breaking. Consistent breaking means that after the first break, no attempt
* will be made to flow subsequent breaks together onto lines. Inconsistent
* is the opposite. Inconsistent breaking example would be, say:
*
* foo(hello, there, good, friends)
*
* breaking inconsistently to become
*
* foo(hello, there
* good, friends);
*
* whereas a consistent breaking would yield:
*
* foo(hello,
* there
* good,
* friends);
*
* That is, in the consistent-break blocks we value vertical alignment
* more than the ability to cram stuff onto a line. But in all cases if it
* can make a block a one-liner, it'll do so.
*
* Carrying on with high-level logic:
*
* The buffered tokens go through a ring-buffer, 'tokens'. The 'left' and
* 'right' indices denote the active portion of the ring buffer as well as
* describing hypothetical points-in-the-infinite-stream at most 3N tokens
* apart (i.e. "not wrapped to ring-buffer boundaries"). The paper will switch
* between using 'left' and 'right' terms to denote the wrapepd-to-ring-buffer
* and point-in-infinite-stream senses freely.
*
* There is a parallel ring buffer, 'size', that holds the calculated size of
* each token. Why calculated? Because for BEGIN/END pairs, the "size"
* includes everything betwen the pair. That is, the "size" of BEGIN is
* actually the sum of the sizes of everything between BEGIN and the paired
* END that follows. Since that is arbitrarily far in the future, 'size' is
* being rewritten regularly while the printer runs; in fact most of the
* machinery is here to work out 'size' entries on the fly (and give up when
* they're so obviously over-long that "infinity" is a good enough
* approximation for purposes of line breaking).
*
* The "input side" of the printer is managed as an abstract process called
* SCAN, which uses 'scan_stack', 'scan_stack_empty', 'top' and 'bottom', to
* manage calculating 'size'. SCAN is, in other words, the process of
* calculating 'size' entries.
*
* The "output side" of the printer is managed by an abstract process called
* PRINT, which uses 'print_stack', 'margin' and 'space' to figure out what to
* do with each token/size pair it consumes as it goes. It's trying to consume
* the entire buffered window, but can't output anything until the size is >=
* 0 (sizes are set to negative while they're pending calculation).
*
* So SCAN takeks input and buffers tokens and pending calculations, while
* PRINT gobbles up completed calculations and tokens from the buffer. The
* theory is that the two can never get more than 3N tokens apart, because
* once there's "obviously" too much data to fit on a line, in a size
* calculation, SCAN will write "infinity" to the size and let PRINT consume
* it.
*
* In this implementation (following the paper, again) the SCAN process is
* the method called 'pretty_print', and the 'PRINT' process is the method
* called 'print'.
*/
obj printer(io::writer out,
uint buf_len,
mutable int margin, // width of lines we're constrained to
mutable int space, // number of spaces left on line
mutable uint left, // index of left side of input stream
mutable uint right, // index of right side of input stream
mutable vec[token] token, // ring-buffer stream goes through
mutable vec[int] size, // ring-buffer of calculated sizes
mutable int left_total, // running size of stream "...left"
mutable int right_total, // running size of stream "...right"
// pseudo-stack, really a ring too. Holds the primary-ring-buffers
// index of the BEGIN that started the current block, possibly
// with the most recent BREAK after that BEGIN (if there is any)
// on top of it. Stuff is flushed off the bottom as it becomes
// irrelevant due to the primary ring-buffer advancing.
mutable vec[uint] scan_stack,
mutable bool scan_stack_empty, // top==bottom disambiguator
mutable uint top, // index of top of scan_stack
mutable uint bottom, // index of bottom of scan_stack
// stack of blocks-in-progress being flushed by print
mutable vec[print_stack_elt] print_stack
) {
fn pretty_print(token t) {
log #fmt("pp [%u,%u]", left, right);
alt (t) {
case (EOF) {
if (!scan_stack_empty) {
self.check_stack(0);
self.advance_left(token.(left), size.(left));
}
self.indent(0);
}
case (BEGIN(?b)) {
if (scan_stack_empty) {
left_total = 1;
right_total = 1;
left = 0u;
right = 0u;
} else {
self.advance_right();
}
log #fmt("pp BEGIN/buffer [%u,%u]", left, right);
token.(right) = t;
size.(right) = -right_total;
self.scan_push(right);
}
case (END) {
if (scan_stack_empty) {
log #fmt("pp END/print [%u,%u]", left, right);
self.print(t, 0);
} else {
log #fmt("pp END/buffer [%u,%u]", left, right);
self.advance_right();
token.(right) = t;
size.(right) = -1;
self.scan_push(right);
}
}
case (BREAK(?b)) {
if (scan_stack_empty) {
left_total = 1;
right_total = 1;
left = 0u;
right = 0u;
} else {
self.advance_right();
}
log #fmt("pp BREAK/buffer [%u,%u]", left, right);
self.check_stack(0);
self.scan_push(right);
token.(right) = t;
size.(right) = -right_total;
right_total += b.blank_space;
}
case (STRING(?s)) {
auto len = str::char_len(s) as int;
if (scan_stack_empty) {
log #fmt("pp STRING/print [%u,%u]", left, right);
self.print(t, len);
} else {
log #fmt("pp STRING/buffer [%u,%u]", left, right);
self.advance_right();
token.(right) = t;
size.(right) = len;
right_total += len;
self.check_stream();
}
}
}
}
fn check_stream() {
log #fmt("check_stream [%u, %u] with left_total=%d, right_total=%d",
left, right, left_total, right_total);;
if (right_total - left_total > space) {
log #fmt("scan window is %d, longer than space on line (%d)",
right_total - left_total, space);
if (!scan_stack_empty) {
if (left == scan_stack.(bottom)) {
log #fmt("setting %u to infinity and popping", left);
size.(self.scan_pop_bottom()) = size_infinity;
}
}
self.advance_left(token.(left), size.(left));
if (left != right) {
self.check_stream();
}
}
}
fn scan_push(uint x) {
log #fmt("scan_push %u", x);
if (scan_stack_empty) {
scan_stack_empty = false;
} else {
top += 1u;
top %= buf_len;
assert top != bottom;
}
scan_stack.(top) = x;
}
fn scan_pop() -> uint {
assert !scan_stack_empty;
auto x = scan_stack.(top);
if (top == bottom) {
scan_stack_empty = true;
} else {
top += (buf_len - 1u);
top %= buf_len;
}
ret x;
}
fn scan_top() -> uint {
assert !scan_stack_empty;
ret scan_stack.(top);
}
fn scan_pop_bottom() -> uint {
assert !scan_stack_empty;
auto x = scan_stack.(bottom);
if (top == bottom) {
scan_stack_empty = true;
} else {
bottom += 1u;
bottom %= buf_len;
}
ret x;
}
fn advance_right() {
right += 1u;
right %= buf_len;
assert right != left;
}
fn advance_left(token x, int L) {
log #fmt("advnce_left [%u,%u], sizeof(%u)=%d", left, right, left, L);
if (L >= 0) {
self.print(x, L);
alt (x) {
case (BREAK(?b)) {
left_total += b.blank_space;
}
case (STRING(?s)) {
// I think? paper says '1' here but 1 and L look same in
// it.
left_total += L;
}
case (_) {}
}
if (left != right) {
left += 1u;
left %= buf_len;
self.advance_left(token.(left), size.(left));
}
}
}
fn check_stack(int k) {
if (!scan_stack_empty) {
auto x = self.scan_top();
alt (token.(x)) {
case (BEGIN(?b)) {
if (k > 0) {
size.(self.scan_pop()) = size.(x) + right_total;
self.check_stack(k - 1);
}
}
case (END) {
// paper says + not =, but that makes no sense.
size.(self.scan_pop()) = 1;
self.check_stack(k + 1);
}
case (_) {
size.(self.scan_pop()) = size.(x) + right_total;
if (k > 0) {
self.check_stack(k);
}
}
}
}
}
fn print_newline(int amount) {
log #fmt("NEWLINE %d", amount);
out.write_str("\n");
self.indent(amount);
}
fn indent(int amount) {
log #fmt("INDENT %d", amount);
auto u = 0;
while (u < amount) {
out.write_str(" ");
u += 1;
}
}
fn print(token x, int L) {
log #fmt("print %s %d (remaining line space=%d)", tok_str(x), L, space);
log buf_str(token, size, left, right, 6u);
alt (x) {
case (BEGIN(?b)) {
if (L > space) {
auto col = (margin - space) + b.offset;
log #fmt("print BEGIN -> push broken block at col %d", col);
vec::push(print_stack,
rec(offset = col,
pbreak = broken(b.breaks)));
} else {
log "print BEGIN -> push fitting block";
vec::push(print_stack,
rec(offset = 0,
pbreak = fits));
}
}
case (END) {
log "print END -> pop END";
assert vec::len(print_stack) != 0u;
vec::pop(print_stack);
}
case (BREAK(?b)) {
auto n = vec::len(print_stack);
let print_stack_elt top =
rec(offset=0, pbreak=broken(inconsistent));;
if (n != 0u) {
top = print_stack.(n - 1u);
}
alt (top.pbreak) {
case (fits) {
log "print BREAK in fitting block";
space -= b.blank_space;
self.indent(b.blank_space);
}
case (broken(consistent)) {
log "print BREAK in consistent block";
self.print_newline(top.offset + b.offset);
space = margin - (top.offset + b.offset);
}
case (broken(inconsistent)) {
if (L > space) {
log "print BREAK w/ newline in inconsistent block";
self.print_newline(top.offset + b.offset);
space = margin - (top.offset + b.offset);
} else {
log "print BREAK w/o newline in inconsistent block";
self.indent(b.blank_space);
space -= b.blank_space;
}
}
}
}
case (STRING(?s)) {
log "print STRING";
assert L as uint == str::char_len(s);
// assert L <= space;
space -= L;
out.write_str(s);
}
case (EOF) {
// EOF should never get here.
fail;
}
}
}
}
// Convenience functions to talk to the printer.
fn ibox(printer p, uint indent) {
p.pretty_print(BEGIN(rec(offset = indent as int,
breaks = inconsistent)));
}
fn cbox(printer p, uint indent) {
p.pretty_print(BEGIN(rec(offset = indent as int,
breaks = consistent)));
}
fn break_offset(printer p, uint n, int off) {
p.pretty_print(BREAK(rec(offset = off,
blank_space = n as int)));
}
fn end(printer p) { p.pretty_print(END); }
fn eof(printer p) { p.pretty_print(EOF); }
fn wrd(printer p, str wrd) { p.pretty_print(STRING(wrd)); }
fn spaces(printer p, uint n) { break_offset(p, n, 0); }
fn space(printer p) { spaces(p, 1u); }
fn hardbreak(printer p) { spaces(p, 0xffffu); }
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//