-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathbase.rs
1969 lines (1746 loc) · 74.1 KB
/
base.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Translate the completed AST to the LLVM IR.
//!
//! Some functions here, such as trans_block and trans_expr, return a value --
//! the result of the translation to LLVM -- while others, such as trans_fn
//! and trans_item, are called only for the side effect of adding a
//! particular definition to the LLVM IR output we're producing.
//!
//! Hopefully useful general knowledge about trans:
//!
//! * There's no way to find out the Ty type of a ValueRef. Doing so
//! would be "trying to get the eggs out of an omelette" (credit:
//! pcwalton). You can, instead, find out its TypeRef by calling val_ty,
//! but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
//! int) and rec(x=int, y=int, z=int) will have the same TypeRef.
#![allow(non_camel_case_types)]
use super::CrateTranslation;
use super::ModuleLlvm;
use super::ModuleSource;
use super::ModuleTranslation;
use assert_module_sources;
use back::link;
use back::linker::LinkerInfo;
use llvm::{Linkage, ValueRef, Vector, get_param};
use llvm;
use rustc::hir::def_id::DefId;
use middle::lang_items::{LangItem, ExchangeMallocFnLangItem, StartFnLangItem};
use rustc::ty::subst::Substs;
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc::ty::adjustment::CustomCoerceUnsized;
use rustc::dep_graph::{DepNode, WorkProduct};
use rustc::hir::map as hir_map;
use rustc::util::common::time;
use rustc::mir::mir_map::MirMap;
use session::config::{self, NoDebugInfo};
use rustc_incremental::IncrementalHashesMap;
use session::Session;
use abi::{self, Abi, FnType};
use adt;
use attributes;
use build::*;
use builder::{Builder, noname};
use callee::{Callee};
use common::{Block, C_bool, C_bytes_in_context, C_i32, C_uint};
use collector::{self, TransItemCollectionMode};
use common::{C_null, C_struct_in_context, C_u64, C_u8, C_undef};
use common::{CrateContext, FunctionContext};
use common::{Result};
use common::{fulfill_obligation};
use common::{type_is_zero_size, val_ty};
use common;
use consts;
use context::{SharedCrateContext, CrateContextList};
use debuginfo::{self, DebugLoc};
use declare;
use machine;
use machine::{llalign_of_min, llsize_of};
use meth;
use mir;
use monomorphize::{self, Instance};
use partitioning::{self, PartitioningStrategy, CodegenUnit};
use symbol_map::SymbolMap;
use symbol_names_test;
use trans_item::TransItem;
use type_::Type;
use type_of;
use value::Value;
use Disr;
use util::sha2::Sha256;
use util::nodemap::{NodeSet, FnvHashMap, FnvHashSet};
use arena::TypedArena;
use libc::c_uint;
use std::ffi::{CStr, CString};
use std::borrow::Cow;
use std::cell::{Cell, RefCell};
use std::ptr;
use std::rc::Rc;
use std::str;
use std::i32;
use syntax_pos::{Span, DUMMY_SP};
use syntax::attr;
use rustc::hir;
use syntax::ast;
thread_local! {
static TASK_LOCAL_INSN_KEY: RefCell<Option<Vec<&'static str>>> = {
RefCell::new(None)
}
}
pub fn with_insn_ctxt<F>(blk: F)
where F: FnOnce(&[&'static str])
{
TASK_LOCAL_INSN_KEY.with(move |slot| {
slot.borrow().as_ref().map(move |s| blk(s));
})
}
pub fn init_insn_ctxt() {
TASK_LOCAL_INSN_KEY.with(|slot| {
*slot.borrow_mut() = Some(Vec::new());
});
}
pub struct _InsnCtxt {
_cannot_construct_outside_of_this_module: (),
}
impl Drop for _InsnCtxt {
fn drop(&mut self) {
TASK_LOCAL_INSN_KEY.with(|slot| {
if let Some(ctx) = slot.borrow_mut().as_mut() {
ctx.pop();
}
})
}
}
pub fn push_ctxt(s: &'static str) -> _InsnCtxt {
debug!("new InsnCtxt: {}", s);
TASK_LOCAL_INSN_KEY.with(|slot| {
if let Some(ctx) = slot.borrow_mut().as_mut() {
ctx.push(s)
}
});
_InsnCtxt {
_cannot_construct_outside_of_this_module: (),
}
}
pub struct StatRecorder<'a, 'tcx: 'a> {
ccx: &'a CrateContext<'a, 'tcx>,
name: Option<String>,
istart: usize,
}
impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
let istart = ccx.stats().n_llvm_insns.get();
StatRecorder {
ccx: ccx,
name: Some(name),
istart: istart,
}
}
}
impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
fn drop(&mut self) {
if self.ccx.sess().trans_stats() {
let iend = self.ccx.stats().n_llvm_insns.get();
self.ccx
.stats()
.fn_stats
.borrow_mut()
.push((self.name.take().unwrap(), iend - self.istart));
self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1);
// Reset LLVM insn count to avoid compound costs.
self.ccx.stats().n_llvm_insns.set(self.istart);
}
}
}
pub fn get_meta(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
StructGEP(bcx, fat_ptr, abi::FAT_PTR_EXTRA)
}
pub fn get_dataptr(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
StructGEP(bcx, fat_ptr, abi::FAT_PTR_ADDR)
}
fn require_alloc_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, info_ty: Ty<'tcx>, it: LangItem) -> DefId {
match bcx.tcx().lang_items.require(it) {
Ok(id) => id,
Err(s) => {
bcx.sess().fatal(&format!("allocation of `{}` {}", info_ty, s));
}
}
}
// The following malloc_raw_dyn* functions allocate a box to contain
// a given type, but with a potentially dynamic size.
pub fn malloc_raw_dyn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
llty_ptr: Type,
info_ty: Ty<'tcx>,
size: ValueRef,
align: ValueRef,
debug_loc: DebugLoc)
-> Result<'blk, 'tcx> {
let _icx = push_ctxt("malloc_raw_exchange");
// Allocate space:
let def_id = require_alloc_fn(bcx, info_ty, ExchangeMallocFnLangItem);
let r = Callee::def(bcx.ccx(), def_id, Substs::empty(bcx.tcx()))
.call(bcx, debug_loc, &[size, align], None);
Result::new(r.bcx, PointerCast(r.bcx, r.val, llty_ptr))
}
pub fn bin_op_to_icmp_predicate(op: hir::BinOp_,
signed: bool)
-> llvm::IntPredicate {
match op {
hir::BiEq => llvm::IntEQ,
hir::BiNe => llvm::IntNE,
hir::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
hir::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
hir::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
hir::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
op => {
bug!("comparison_op_to_icmp_predicate: expected comparison operator, \
found {:?}",
op)
}
}
}
pub fn bin_op_to_fcmp_predicate(op: hir::BinOp_) -> llvm::RealPredicate {
match op {
hir::BiEq => llvm::RealOEQ,
hir::BiNe => llvm::RealUNE,
hir::BiLt => llvm::RealOLT,
hir::BiLe => llvm::RealOLE,
hir::BiGt => llvm::RealOGT,
hir::BiGe => llvm::RealOGE,
op => {
bug!("comparison_op_to_fcmp_predicate: expected comparison operator, \
found {:?}",
op);
}
}
}
pub fn compare_fat_ptrs<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
lhs_addr: ValueRef,
lhs_extra: ValueRef,
rhs_addr: ValueRef,
rhs_extra: ValueRef,
_t: Ty<'tcx>,
op: hir::BinOp_,
debug_loc: DebugLoc)
-> ValueRef {
match op {
hir::BiEq => {
let addr_eq = ICmp(bcx, llvm::IntEQ, lhs_addr, rhs_addr, debug_loc);
let extra_eq = ICmp(bcx, llvm::IntEQ, lhs_extra, rhs_extra, debug_loc);
And(bcx, addr_eq, extra_eq, debug_loc)
}
hir::BiNe => {
let addr_eq = ICmp(bcx, llvm::IntNE, lhs_addr, rhs_addr, debug_loc);
let extra_eq = ICmp(bcx, llvm::IntNE, lhs_extra, rhs_extra, debug_loc);
Or(bcx, addr_eq, extra_eq, debug_loc)
}
hir::BiLe | hir::BiLt | hir::BiGe | hir::BiGt => {
// a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1)
let (op, strict_op) = match op {
hir::BiLt => (llvm::IntULT, llvm::IntULT),
hir::BiLe => (llvm::IntULE, llvm::IntULT),
hir::BiGt => (llvm::IntUGT, llvm::IntUGT),
hir::BiGe => (llvm::IntUGE, llvm::IntUGT),
_ => bug!(),
};
let addr_eq = ICmp(bcx, llvm::IntEQ, lhs_addr, rhs_addr, debug_loc);
let extra_op = ICmp(bcx, op, lhs_extra, rhs_extra, debug_loc);
let addr_eq_extra_op = And(bcx, addr_eq, extra_op, debug_loc);
let addr_strict = ICmp(bcx, strict_op, lhs_addr, rhs_addr, debug_loc);
Or(bcx, addr_strict, addr_eq_extra_op, debug_loc)
}
_ => {
bug!("unexpected fat ptr binop");
}
}
}
pub fn compare_scalar_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
lhs: ValueRef,
rhs: ValueRef,
t: Ty<'tcx>,
op: hir::BinOp_,
debug_loc: DebugLoc)
-> ValueRef {
match t.sty {
ty::TyTuple(ref tys) if tys.is_empty() => {
// We don't need to do actual comparisons for nil.
// () == () holds but () < () does not.
match op {
hir::BiEq | hir::BiLe | hir::BiGe => return C_bool(bcx.ccx(), true),
hir::BiNe | hir::BiLt | hir::BiGt => return C_bool(bcx.ccx(), false),
// refinements would be nice
_ => bug!("compare_scalar_types: must be a comparison operator"),
}
}
ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyBool | ty::TyUint(_) | ty::TyChar => {
ICmp(bcx,
bin_op_to_icmp_predicate(op, false),
lhs,
rhs,
debug_loc)
}
ty::TyRawPtr(mt) if common::type_is_sized(bcx.tcx(), mt.ty) => {
ICmp(bcx,
bin_op_to_icmp_predicate(op, false),
lhs,
rhs,
debug_loc)
}
ty::TyRawPtr(_) => {
let lhs_addr = Load(bcx, GEPi(bcx, lhs, &[0, abi::FAT_PTR_ADDR]));
let lhs_extra = Load(bcx, GEPi(bcx, lhs, &[0, abi::FAT_PTR_EXTRA]));
let rhs_addr = Load(bcx, GEPi(bcx, rhs, &[0, abi::FAT_PTR_ADDR]));
let rhs_extra = Load(bcx, GEPi(bcx, rhs, &[0, abi::FAT_PTR_EXTRA]));
compare_fat_ptrs(bcx,
lhs_addr,
lhs_extra,
rhs_addr,
rhs_extra,
t,
op,
debug_loc)
}
ty::TyInt(_) => {
ICmp(bcx,
bin_op_to_icmp_predicate(op, true),
lhs,
rhs,
debug_loc)
}
ty::TyFloat(_) => {
FCmp(bcx,
bin_op_to_fcmp_predicate(op),
lhs,
rhs,
debug_loc)
}
// Should never get here, because t is scalar.
_ => bug!("non-scalar type passed to compare_scalar_types"),
}
}
pub fn compare_simd_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
lhs: ValueRef,
rhs: ValueRef,
t: Ty<'tcx>,
ret_ty: Type,
op: hir::BinOp_,
debug_loc: DebugLoc)
-> ValueRef {
let signed = match t.sty {
ty::TyFloat(_) => {
let cmp = bin_op_to_fcmp_predicate(op);
return SExt(bcx, FCmp(bcx, cmp, lhs, rhs, debug_loc), ret_ty);
},
ty::TyUint(_) => false,
ty::TyInt(_) => true,
_ => bug!("compare_simd_types: invalid SIMD type"),
};
let cmp = bin_op_to_icmp_predicate(op, signed);
// LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
// to get the correctly sized type. This will compile to a single instruction
// once the IR is converted to assembly if the SIMD instruction is supported
// by the target architecture.
SExt(bcx, ICmp(bcx, cmp, lhs, rhs, debug_loc), ret_ty)
}
/// Retrieve the information we are losing (making dynamic) in an unsizing
/// adjustment.
///
/// The `old_info` argument is a bit funny. It is intended for use
/// in an upcast, where the new vtable for an object will be drived
/// from the old one.
pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
source: Ty<'tcx>,
target: Ty<'tcx>,
old_info: Option<ValueRef>)
-> ValueRef {
let (source, target) = ccx.tcx().struct_lockstep_tails(source, target);
match (&source.sty, &target.sty) {
(&ty::TyArray(_, len), &ty::TySlice(_)) => C_uint(ccx, len),
(&ty::TyTrait(_), &ty::TyTrait(_)) => {
// For now, upcasts are limited to changes in marker
// traits, and hence never actually require an actual
// change to the vtable.
old_info.expect("unsized_info: missing old info for trait upcast")
}
(_, &ty::TyTrait(ref data)) => {
let trait_ref = data.principal.with_self_ty(ccx.tcx(), source);
let trait_ref = ccx.tcx().erase_regions(&trait_ref);
consts::ptrcast(meth::get_vtable(ccx, trait_ref),
Type::vtable_ptr(ccx))
}
_ => bug!("unsized_info: invalid unsizing {:?} -> {:?}",
source,
target),
}
}
/// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer.
pub fn unsize_thin_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
src: ValueRef,
src_ty: Ty<'tcx>,
dst_ty: Ty<'tcx>)
-> (ValueRef, ValueRef) {
debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
match (&src_ty.sty, &dst_ty.sty) {
(&ty::TyBox(a), &ty::TyBox(b)) |
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
assert!(common::type_is_sized(bcx.tcx(), a));
let ptr_ty = type_of::in_memory_type_of(bcx.ccx(), b).ptr_to();
(PointerCast(bcx, src, ptr_ty),
unsized_info(bcx.ccx(), a, b, None))
}
_ => bug!("unsize_thin_ptr: called on bad types"),
}
}
/// Coerce `src`, which is a reference to a value of type `src_ty`,
/// to a value of type `dst_ty` and store the result in `dst`
pub fn coerce_unsized_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
src: ValueRef,
src_ty: Ty<'tcx>,
dst: ValueRef,
dst_ty: Ty<'tcx>) {
match (&src_ty.sty, &dst_ty.sty) {
(&ty::TyBox(..), &ty::TyBox(..)) |
(&ty::TyRef(..), &ty::TyRef(..)) |
(&ty::TyRef(..), &ty::TyRawPtr(..)) |
(&ty::TyRawPtr(..), &ty::TyRawPtr(..)) => {
let (base, info) = if common::type_is_fat_ptr(bcx.tcx(), src_ty) {
// fat-ptr to fat-ptr unsize preserves the vtable
// i.e. &'a fmt::Debug+Send => &'a fmt::Debug
// So we need to pointercast the base to ensure
// the types match up.
let (base, info) = load_fat_ptr(bcx, src, src_ty);
let llcast_ty = type_of::fat_ptr_base_ty(bcx.ccx(), dst_ty);
let base = PointerCast(bcx, base, llcast_ty);
(base, info)
} else {
let base = load_ty(bcx, src, src_ty);
unsize_thin_ptr(bcx, base, src_ty, dst_ty)
};
store_fat_ptr(bcx, base, info, dst, dst_ty);
}
(&ty::TyAdt(def_a, substs_a), &ty::TyAdt(def_b, substs_b)) => {
assert_eq!(def_a, def_b);
let src_fields = def_a.variants[0].fields.iter().map(|f| {
monomorphize::field_ty(bcx.tcx(), substs_a, f)
});
let dst_fields = def_b.variants[0].fields.iter().map(|f| {
monomorphize::field_ty(bcx.tcx(), substs_b, f)
});
let src = adt::MaybeSizedValue::sized(src);
let dst = adt::MaybeSizedValue::sized(dst);
let iter = src_fields.zip(dst_fields).enumerate();
for (i, (src_fty, dst_fty)) in iter {
if type_is_zero_size(bcx.ccx(), dst_fty) {
continue;
}
let src_f = adt::trans_field_ptr(bcx, src_ty, src, Disr(0), i);
let dst_f = adt::trans_field_ptr(bcx, dst_ty, dst, Disr(0), i);
if src_fty == dst_fty {
memcpy_ty(bcx, dst_f, src_f, src_fty);
} else {
coerce_unsized_into(bcx, src_f, src_fty, dst_f, dst_fty);
}
}
}
_ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}",
src_ty,
dst_ty),
}
}
pub fn custom_coerce_unsize_info<'scx, 'tcx>(scx: &SharedCrateContext<'scx, 'tcx>,
source_ty: Ty<'tcx>,
target_ty: Ty<'tcx>)
-> CustomCoerceUnsized {
let trait_ref = ty::Binder(ty::TraitRef {
def_id: scx.tcx().lang_items.coerce_unsized_trait().unwrap(),
substs: Substs::new_trait(scx.tcx(), source_ty, &[target_ty])
});
match fulfill_obligation(scx, DUMMY_SP, trait_ref) {
traits::VtableImpl(traits::VtableImplData { impl_def_id, .. }) => {
scx.tcx().custom_coerce_unsized_kind(impl_def_id)
}
vtable => {
bug!("invalid CoerceUnsized vtable: {:?}", vtable);
}
}
}
pub fn cast_shift_expr_rhs(cx: Block, op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
cast_shift_rhs(op, lhs, rhs, |a, b| Trunc(cx, a, b), |a, b| ZExt(cx, a, b))
}
pub fn cast_shift_const_rhs(op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
cast_shift_rhs(op,
lhs,
rhs,
|a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
|a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
}
fn cast_shift_rhs<F, G>(op: hir::BinOp_,
lhs: ValueRef,
rhs: ValueRef,
trunc: F,
zext: G)
-> ValueRef
where F: FnOnce(ValueRef, Type) -> ValueRef,
G: FnOnce(ValueRef, Type) -> ValueRef
{
// Shifts may have any size int on the rhs
if op.is_shift() {
let mut rhs_llty = val_ty(rhs);
let mut lhs_llty = val_ty(lhs);
if rhs_llty.kind() == Vector {
rhs_llty = rhs_llty.element_type()
}
if lhs_llty.kind() == Vector {
lhs_llty = lhs_llty.element_type()
}
let rhs_sz = rhs_llty.int_width();
let lhs_sz = lhs_llty.int_width();
if lhs_sz < rhs_sz {
trunc(rhs, lhs_llty)
} else if lhs_sz > rhs_sz {
// FIXME (#1877: If shifting by negative
// values becomes not undefined then this is wrong.
zext(rhs, lhs_llty)
} else {
rhs
}
} else {
rhs
}
}
pub fn invoke<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
llfn: ValueRef,
llargs: &[ValueRef],
debug_loc: DebugLoc)
-> (ValueRef, Block<'blk, 'tcx>) {
let _icx = push_ctxt("invoke_");
if bcx.unreachable.get() {
return (C_null(Type::i8(bcx.ccx())), bcx);
}
if need_invoke(bcx) {
debug!("invoking {:?} at {:?}", Value(llfn), bcx.llbb);
for &llarg in llargs {
debug!("arg: {:?}", Value(llarg));
}
let normal_bcx = bcx.fcx.new_block("normal-return");
let landing_pad = bcx.fcx.get_landing_pad();
let llresult = Invoke(bcx,
llfn,
&llargs[..],
normal_bcx.llbb,
landing_pad,
debug_loc);
return (llresult, normal_bcx);
} else {
debug!("calling {:?} at {:?}", Value(llfn), bcx.llbb);
for &llarg in llargs {
debug!("arg: {:?}", Value(llarg));
}
let llresult = Call(bcx, llfn, &llargs[..], debug_loc);
return (llresult, bcx);
}
}
/// Returns whether this session's target will use SEH-based unwinding.
///
/// This is only true for MSVC targets, and even then the 64-bit MSVC target
/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
/// 64-bit MinGW) instead of "full SEH".
pub fn wants_msvc_seh(sess: &Session) -> bool {
sess.target.target.options.is_like_msvc
}
pub fn avoid_invoke(bcx: Block) -> bool {
bcx.sess().no_landing_pads() || bcx.lpad().is_some()
}
pub fn need_invoke(bcx: Block) -> bool {
if avoid_invoke(bcx) {
false
} else {
bcx.fcx.needs_invoke()
}
}
/// Helper for loading values from memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values. Also handles various special cases where the type
/// gives us better information about what we are loading.
pub fn load_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, ptr: ValueRef, t: Ty<'tcx>) -> ValueRef {
if cx.unreachable.get() {
return C_undef(type_of::type_of(cx.ccx(), t));
}
load_ty_builder(&B(cx), ptr, t)
}
pub fn load_ty_builder<'a, 'tcx>(b: &Builder<'a, 'tcx>, ptr: ValueRef, t: Ty<'tcx>) -> ValueRef {
let ccx = b.ccx;
if type_is_zero_size(ccx, t) {
return C_undef(type_of::type_of(ccx, t));
}
unsafe {
let global = llvm::LLVMIsAGlobalVariable(ptr);
if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True {
let val = llvm::LLVMGetInitializer(global);
if !val.is_null() {
if t.is_bool() {
return llvm::LLVMConstTrunc(val, Type::i1(ccx).to_ref());
}
return val;
}
}
}
if t.is_bool() {
b.trunc(b.load_range_assert(ptr, 0, 2, llvm::False), Type::i1(ccx))
} else if t.is_char() {
// a char is a Unicode codepoint, and so takes values from 0
// to 0x10FFFF inclusive only.
b.load_range_assert(ptr, 0, 0x10FFFF + 1, llvm::False)
} else if (t.is_region_ptr() || t.is_unique()) &&
!common::type_is_fat_ptr(ccx.tcx(), t) {
b.load_nonnull(ptr)
} else {
b.load(ptr)
}
}
/// Helper for storing values in memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values.
pub fn store_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, v: ValueRef, dst: ValueRef, t: Ty<'tcx>) {
if cx.unreachable.get() {
return;
}
debug!("store_ty: {:?} : {:?} <- {:?}", Value(dst), t, Value(v));
if common::type_is_fat_ptr(cx.tcx(), t) {
Store(cx,
ExtractValue(cx, v, abi::FAT_PTR_ADDR),
get_dataptr(cx, dst));
Store(cx,
ExtractValue(cx, v, abi::FAT_PTR_EXTRA),
get_meta(cx, dst));
} else {
Store(cx, from_immediate(cx, v), dst);
}
}
pub fn store_fat_ptr<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
data: ValueRef,
extra: ValueRef,
dst: ValueRef,
_ty: Ty<'tcx>) {
// FIXME: emit metadata
Store(cx, data, get_dataptr(cx, dst));
Store(cx, extra, get_meta(cx, dst));
}
pub fn load_fat_ptr<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
src: ValueRef,
_ty: Ty<'tcx>)
-> (ValueRef, ValueRef) {
// FIXME: emit metadata
(Load(cx, get_dataptr(cx, src)),
Load(cx, get_meta(cx, src)))
}
pub fn from_immediate(bcx: Block, val: ValueRef) -> ValueRef {
if val_ty(val) == Type::i1(bcx.ccx()) {
ZExt(bcx, val, Type::i8(bcx.ccx()))
} else {
val
}
}
pub fn to_immediate(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef {
if ty.is_bool() {
Trunc(bcx, val, Type::i1(bcx.ccx()))
} else {
val
}
}
pub fn with_cond<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>, val: ValueRef, f: F) -> Block<'blk, 'tcx>
where F: FnOnce(Block<'blk, 'tcx>) -> Block<'blk, 'tcx>
{
let _icx = push_ctxt("with_cond");
if bcx.unreachable.get() || common::const_to_opt_uint(val) == Some(0) {
return bcx;
}
let fcx = bcx.fcx;
let next_cx = fcx.new_block("next");
let cond_cx = fcx.new_block("cond");
CondBr(bcx, val, cond_cx.llbb, next_cx.llbb, DebugLoc::None);
let after_cx = f(cond_cx);
if !after_cx.terminated.get() {
Br(after_cx, next_cx.llbb, DebugLoc::None);
}
next_cx
}
pub enum Lifetime { Start, End }
// If LLVM lifetime intrinsic support is enabled (i.e. optimizations
// on), and `ptr` is nonzero-sized, then extracts the size of `ptr`
// and the intrinsic for `lt` and passes them to `emit`, which is in
// charge of generating code to call the passed intrinsic on whatever
// block of generated code is targetted for the intrinsic.
//
// If LLVM lifetime intrinsic support is disabled (i.e. optimizations
// off) or `ptr` is zero-sized, then no-op (does not call `emit`).
fn core_lifetime_emit<'blk, 'tcx, F>(ccx: &'blk CrateContext<'blk, 'tcx>,
ptr: ValueRef,
lt: Lifetime,
emit: F)
where F: FnOnce(&'blk CrateContext<'blk, 'tcx>, machine::llsize, ValueRef)
{
if ccx.sess().opts.optimize == config::OptLevel::No {
return;
}
let _icx = push_ctxt(match lt {
Lifetime::Start => "lifetime_start",
Lifetime::End => "lifetime_end"
});
let size = machine::llsize_of_alloc(ccx, val_ty(ptr).element_type());
if size == 0 {
return;
}
let lifetime_intrinsic = ccx.get_intrinsic(match lt {
Lifetime::Start => "llvm.lifetime.start",
Lifetime::End => "llvm.lifetime.end"
});
emit(ccx, size, lifetime_intrinsic)
}
impl Lifetime {
pub fn call(self, b: &Builder, ptr: ValueRef) {
core_lifetime_emit(b.ccx, ptr, self, |ccx, size, lifetime_intrinsic| {
let ptr = b.pointercast(ptr, Type::i8p(ccx));
b.call(lifetime_intrinsic, &[C_u64(ccx, size), ptr], None);
});
}
}
pub fn call_lifetime_start(bcx: Block, ptr: ValueRef) {
if !bcx.unreachable.get() {
Lifetime::Start.call(&bcx.build(), ptr);
}
}
pub fn call_lifetime_end(bcx: Block, ptr: ValueRef) {
if !bcx.unreachable.get() {
Lifetime::End.call(&bcx.build(), ptr);
}
}
// Generates code for resumption of unwind at the end of a landing pad.
pub fn trans_unwind_resume(bcx: Block, lpval: ValueRef) {
if !bcx.sess().target.target.options.custom_unwind_resume {
Resume(bcx, lpval);
} else {
let exc_ptr = ExtractValue(bcx, lpval, 0);
bcx.fcx.eh_unwind_resume()
.call(bcx, DebugLoc::None, &[exc_ptr], None);
}
}
pub fn call_memcpy<'bcx, 'tcx>(b: &Builder<'bcx, 'tcx>,
dst: ValueRef,
src: ValueRef,
n_bytes: ValueRef,
align: u32) {
let _icx = push_ctxt("call_memcpy");
let ccx = b.ccx;
let ptr_width = &ccx.sess().target.target.target_pointer_width[..];
let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width);
let memcpy = ccx.get_intrinsic(&key);
let src_ptr = b.pointercast(src, Type::i8p(ccx));
let dst_ptr = b.pointercast(dst, Type::i8p(ccx));
let size = b.intcast(n_bytes, ccx.int_type());
let align = C_i32(ccx, align as i32);
let volatile = C_bool(ccx, false);
b.call(memcpy, &[dst_ptr, src_ptr, size, align, volatile], None);
}
pub fn memcpy_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, dst: ValueRef, src: ValueRef, t: Ty<'tcx>) {
let _icx = push_ctxt("memcpy_ty");
let ccx = bcx.ccx();
if type_is_zero_size(ccx, t) || bcx.unreachable.get() {
return;
}
if t.is_structural() {
let llty = type_of::type_of(ccx, t);
let llsz = llsize_of(ccx, llty);
let llalign = type_of::align_of(ccx, t);
call_memcpy(&B(bcx), dst, src, llsz, llalign as u32);
} else if common::type_is_fat_ptr(bcx.tcx(), t) {
let (data, extra) = load_fat_ptr(bcx, src, t);
store_fat_ptr(bcx, data, extra, dst, t);
} else {
store_ty(bcx, load_ty(bcx, src, t), dst, t);
}
}
pub fn init_zero_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) {
if cx.unreachable.get() {
return;
}
let _icx = push_ctxt("init_zero_mem");
let bcx = cx;
memfill(&B(bcx), llptr, t, 0);
}
// Always use this function instead of storing a constant byte to the memory
// in question. e.g. if you store a zero constant, LLVM will drown in vreg
// allocation for large data structures, and the generated code will be
// awful. (A telltale sign of this is large quantities of
// `mov [byte ptr foo],0` in the generated code.)
fn memfill<'a, 'tcx>(b: &Builder<'a, 'tcx>, llptr: ValueRef, ty: Ty<'tcx>, byte: u8) {
let _icx = push_ctxt("memfill");
let ccx = b.ccx;
let llty = type_of::type_of(ccx, ty);
let llptr = b.pointercast(llptr, Type::i8(ccx).ptr_to());
let llzeroval = C_u8(ccx, byte);
let size = machine::llsize_of(ccx, llty);
let align = C_i32(ccx, type_of::align_of(ccx, ty) as i32);
call_memset(b, llptr, llzeroval, size, align, false);
}
pub fn call_memset<'bcx, 'tcx>(b: &Builder<'bcx, 'tcx>,
ptr: ValueRef,
fill_byte: ValueRef,
size: ValueRef,
align: ValueRef,
volatile: bool) {
let ccx = b.ccx;
let ptr_width = &ccx.sess().target.target.target_pointer_width[..];
let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width);
let llintrinsicfn = ccx.get_intrinsic(&intrinsic_key);
let volatile = C_bool(ccx, volatile);
b.call(llintrinsicfn, &[ptr, fill_byte, size, align, volatile], None);
}
pub fn alloc_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
ty: Ty<'tcx>,
name: &str) -> ValueRef {
assert!(!ty.has_param_types());
alloca(bcx, type_of::type_of(bcx.ccx(), ty), name)
}
pub fn alloca(cx: Block, ty: Type, name: &str) -> ValueRef {
let _icx = push_ctxt("alloca");
if cx.unreachable.get() {
unsafe {
return llvm::LLVMGetUndef(ty.ptr_to().to_ref());
}
}
DebugLoc::None.apply(cx.fcx);
Alloca(cx, ty, name)
}
impl<'blk, 'tcx> FunctionContext<'blk, 'tcx> {
/// Create a function context for the given function.
/// Beware that you must call `fcx.init` or `fcx.bind_args`
/// before doing anything with the returned function context.
pub fn new(ccx: &'blk CrateContext<'blk, 'tcx>,
llfndecl: ValueRef,
fn_ty: FnType,
definition: Option<(Instance<'tcx>, &ty::FnSig<'tcx>, Abi)>,
block_arena: &'blk TypedArena<common::BlockS<'blk, 'tcx>>)
-> FunctionContext<'blk, 'tcx> {
let (param_substs, def_id) = match definition {
Some((instance, ..)) => {
common::validate_substs(instance.substs);
(instance.substs, Some(instance.def))
}
None => (Substs::empty(ccx.tcx()), None)
};
let local_id = def_id.and_then(|id| ccx.tcx().map.as_local_node_id(id));
debug!("FunctionContext::new({})",
definition.map_or(String::new(), |d| d.0.to_string()));
let no_debug = if let Some(id) = local_id {
ccx.tcx().map.attrs(id)
.iter().any(|item| item.check_name("no_debug"))
} else if let Some(def_id) = def_id {
ccx.sess().cstore.item_attrs(def_id)
.iter().any(|item| item.check_name("no_debug"))
} else {
false
};
let mir = def_id.and_then(|id| ccx.get_mir(id));
let debug_context = if let (false, Some((instance, sig, abi)), &Some(ref mir)) =
(no_debug, definition, &mir) {
debuginfo::create_function_debug_context(ccx, instance, sig, abi, llfndecl, mir)
} else {
debuginfo::empty_function_debug_context(ccx)
};
FunctionContext {
mir: mir,
llfn: llfndecl,
llretslotptr: Cell::new(None),
param_env: ccx.tcx().empty_parameter_environment(),
alloca_insert_pt: Cell::new(None),
landingpad_alloca: Cell::new(None),
fn_ty: fn_ty,
param_substs: param_substs,
span: None,
block_arena: block_arena,
lpad_arena: TypedArena::new(),
ccx: ccx,
debug_context: debug_context,
scopes: RefCell::new(Vec::new()),
}
}
/// Performs setup on a newly created function, creating the entry
/// scope block and allocating space for the return pointer.
pub fn init(&'blk self, skip_retptr: bool) -> Block<'blk, 'tcx> {
let entry_bcx = self.new_block("entry-block");
// Use a dummy instruction as the insertion point for all allocas.
// This is later removed in FunctionContext::cleanup.
self.alloca_insert_pt.set(Some(unsafe {
Load(entry_bcx, C_null(Type::i8p(self.ccx)));
llvm::LLVMGetFirstInstruction(entry_bcx.llbb)
}));
if !self.fn_ty.ret.is_ignore() && !skip_retptr {
// We normally allocate the llretslotptr, unless we
// have been instructed to skip it for immediate return
// values, or there is nothing to return at all.
// We create an alloca to hold a pointer of type `ret.original_ty`
// which will hold the pointer to the right alloca which has the
// final ret value
let llty = self.fn_ty.ret.memory_ty(self.ccx);
// But if there are no nested returns, we skip the indirection
// and have a single retslot
let slot = if self.fn_ty.ret.is_indirect() {
get_param(self.llfn, 0)
} else {
AllocaFcx(self, llty, "sret_slot")
};
self.llretslotptr.set(Some(slot));
}