-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathmacros.rs
601 lines (539 loc) · 20.2 KB
/
macros.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
//! Macros shared throughout the compiler-builtins implementation
/// Changes the visibility to `pub` if feature "public-test-deps" is set
#[cfg(not(feature = "public-test-deps"))]
macro_rules! public_test_dep {
($(#[$($meta:meta)*])* pub(crate) $ident:ident $($tokens:tt)*) => {
$(#[$($meta)*])* pub(crate) $ident $($tokens)*
};
}
/// Changes the visibility to `pub` if feature "public-test-deps" is set
#[cfg(feature = "public-test-deps")]
macro_rules! public_test_dep {
{$(#[$($meta:meta)*])* pub(crate) $ident:ident $($tokens:tt)*} => {
$(#[$($meta)*])* pub $ident $($tokens)*
};
}
/// The "main macro" used for defining intrinsics.
///
/// The compiler-builtins library is super platform-specific with tons of crazy
/// little tweaks for various platforms. As a result it *could* involve a lot of
/// #[cfg] and macro soup, but the intention is that this macro alleviates a lot
/// of that complexity. Ideally this macro has all the weird ABI things
/// platforms need and elsewhere in this library it just looks like normal Rust
/// code.
///
/// All intrinsics functions are marked with #[linkage = "weak"] when
/// `not(windows) and not(target_vendor = "apple")`.
/// `weak` linkage attribute is used so that these functions can be replaced
/// by another implementation at link time. This is particularly useful for mixed
/// Rust/C++ binaries that want to use the C++ intrinsics, otherwise linking against
/// the Rust stdlib will replace those from the compiler-rt library.
///
/// This macro is structured to be invoked with a bunch of functions that looks
/// like:
/// ```ignore
/// intrinsics! {
/// pub extern "C" fn foo(a: i32) -> u32 {
/// // ...
/// }
///
/// #[nonstandard_attribute]
/// pub extern "C" fn bar(a: i32) -> u32 {
/// // ...
/// }
/// }
/// ```
///
/// Each function is defined in a manner that looks like a normal Rust function.
/// The macro then accepts a few nonstandard attributes that can decorate
/// various functions. Each of the attributes is documented below with what it
/// can do, and each of them slightly tweaks how further expansion happens.
///
/// A quick overview of attributes supported right now are:
///
/// * `maybe_use_optimized_c_shim` - indicates that the Rust implementation is
/// ignored if an optimized C version was compiled.
/// * `aapcs_on_arm` - forces the ABI of the function to be `"aapcs"` on ARM and
/// the specified ABI everywhere else.
/// * `unadjusted_on_win64` - like `aapcs_on_arm` this switches to the
/// `"unadjusted"` abi on Win64 and the specified abi elsewhere.
/// * `win64_128bit_abi_hack` - this attribute is used for 128-bit integer
/// intrinsics where the ABI is slightly tweaked on Windows platforms, but
/// it's a normal ABI elsewhere for returning a 128 bit integer.
/// * `arm_aeabi_alias` - handles the "aliasing" of various intrinsics on ARM
/// their otherwise typical names to other prefixed ones.
/// * `ppc_alias` - changes the name of the symbol on PowerPC platforms without
/// changing any other behavior. This is mostly for `f128`, which is `tf` on
/// most platforms but `kf` on PowerPC.
macro_rules! intrinsics {
() => ();
// Support cfg_attr:
(
#[cfg_attr($e:meta, $($attr:tt)*)]
$(#[$($attrs:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg($e)]
intrinsics! {
#[$($attr)*]
$(#[$($attrs)*])*
pub extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
$($body)*
}
}
#[cfg(not($e))]
intrinsics! {
$(#[$($attrs)*])*
pub extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Same as above but for unsafe.
(
#[cfg_attr($e:meta, $($attr:tt)*)]
$(#[$($attrs:tt)*])*
pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg($e)]
intrinsics! {
#[$($attr)*]
$(#[$($attrs)*])*
pub unsafe extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
$($body)*
}
}
#[cfg(not($e))]
intrinsics! {
$(#[$($attrs)*])*
pub unsafe extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Right now there's a bunch of architecture-optimized intrinsics in the
// stock compiler-rt implementation. Not all of these have been ported over
// to Rust yet so when the `c` feature of this crate is enabled we fall back
// to the architecture-specific versions which should be more optimized. The
// purpose of this macro is to easily allow specifying this.
//
// The `#[maybe_use_optimized_c_shim]` attribute indicates that this
// intrinsic may have an optimized C version. In these situations the build
// script, if the C code is enabled and compiled, will emit a cfg directive
// to get passed to rustc for our compilation. If that cfg is set we skip
// the Rust implementation, but if the attribute is not enabled then we
// compile in the Rust implementation.
(
#[maybe_use_optimized_c_shim]
$(#[$($attr:tt)*])*
pub $(unsafe $(@ $empty:tt)? )? extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg($name = "optimized-c")]
pub $(unsafe $($empty)? )? extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
extern $abi {
fn $name($($argname: $ty),*) $(-> $ret)?;
}
unsafe {
$name($($argname),*)
}
}
#[cfg(not($name = "optimized-c"))]
intrinsics! {
$(#[$($attr)*])*
pub $(unsafe $($empty)? )? extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// We recognize the `#[aapcs_on_arm]` attribute here and generate the
// same intrinsic but force it to have the `"aapcs"` calling convention on
// ARM and `"C"` elsewhere.
(
#[aapcs_on_arm]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(target_arch = "arm")]
intrinsics! {
$(#[$($attr)*])*
pub extern "aapcs" fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
#[cfg(not(target_arch = "arm"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Like aapcs above we recognize an attribute for the "unadjusted" abi on
// win64 for some methods.
(
#[unadjusted_on_win64]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(any(windows, all(target_os = "uefi", target_arch = "x86_64")), target_pointer_width = "64"))]
intrinsics! {
$(#[$($attr)*])*
pub extern "unadjusted" fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
#[cfg(not(all(any(windows, all(target_os = "uefi", target_arch = "x86_64")), target_pointer_width = "64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// Some intrinsics on win64 which return a 128-bit integer have an.. unusual
// calling convention. That's managed here with this "abi hack" which alters
// the generated symbol's ABI.
//
// This will still define a function in this crate with the given name and
// signature, but the actual symbol for the intrinsic may have a slightly
// different ABI on win64.
(
#[win64_128bit_abi_hack]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(any(windows, target_os = "uefi"), target_arch = "x86_64"))]
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(all(any(windows, target_os = "uefi"), target_arch = "x86_64", not(feature = "mangled-names")))]
mod $name {
#[no_mangle]
#[cfg_attr(not(all(windows, target_env = "gnu")), linkage = "weak")]
extern $abi fn $name( $($argname: $ty),* )
-> $crate::macros::win64_128bit_abi_hack::U64x2
{
let e: $($ret)? = super::$name($($argname),*);
$crate::macros::win64_128bit_abi_hack::U64x2::from(e)
}
}
#[cfg(not(all(any(windows, target_os = "uefi"), target_arch = "x86_64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// `arm_aeabi_alias` would conflict with `f16_apple_{arg,ret}_abi` not handled here. Avoid macro ambiguity by combining in a
// single `#[]`.
(
#[apple_f16_arg_abi]
#[arm_aeabi_alias = $alias:ident]
$($t:tt)*
) => {
intrinsics! {
#[apple_f16_arg_abi, arm_aeabi_alias = $alias]
$($t)*
}
};
(
#[apple_f16_ret_abi]
#[arm_aeabi_alias = $alias:ident]
$($t:tt)*
) => {
intrinsics! {
#[apple_f16_ret_abi, arm_aeabi_alias = $alias]
$($t)*
}
};
// On x86 (32-bit and 64-bit) Apple platforms, `f16` is passed and returned like a `u16` unless
// the builtin involves `f128`.
(
// `arm_aeabi_alias` would conflict if not handled here. Avoid macro ambiguity by combining
// in a single `#[]`.
#[apple_f16_arg_abi $(, arm_aeabi_alias = $alias:ident)?]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(target_vendor = "apple", any(target_arch = "x86", target_arch = "x86_64")))]
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(all(target_vendor = "apple", any(target_arch = "x86", target_arch = "x86_64"), not(feature = "mangled-names")))]
mod $name {
#[no_mangle]
#[cfg_attr(not(all(windows, target_env = "gnu")), linkage = "weak")]
$(#[$($attr)*])*
extern $abi fn $name( $($argname: u16),* ) $(-> $ret)? {
super::$name($(f16::from_bits($argname)),*)
}
}
#[cfg(not(all(target_vendor = "apple", any(target_arch = "x86", target_arch = "x86_64"))))]
intrinsics! {
$(#[arm_aeabi_alias = $alias])?
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
(
#[apple_f16_ret_abi $(, arm_aeabi_alias = $alias:ident)?]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(all(target_vendor = "apple", any(target_arch = "x86", target_arch = "x86_64")))]
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(all(target_vendor = "apple", any(target_arch = "x86", target_arch = "x86_64"), not(feature = "mangled-names")))]
mod $name {
#[no_mangle]
#[cfg_attr(not(all(windows, target_env = "gnu")), linkage = "weak")]
$(#[$($attr)*])*
extern $abi fn $name( $($argname: $ty),* ) -> u16 {
super::$name($($argname),*).to_bits()
}
}
#[cfg(not(all(target_vendor = "apple", any(target_arch = "x86", target_arch = "x86_64"))))]
intrinsics! {
$(#[arm_aeabi_alias = $alias])?
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// A bunch of intrinsics on ARM are aliased in the standard compiler-rt
// build under `__aeabi_*` aliases, and LLVM will call these instead of the
// original function. The aliasing here is used to generate these symbols in
// the object file.
(
#[arm_aeabi_alias = $alias:ident]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(target_arch = "arm")]
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(all(target_arch = "arm", not(feature = "mangled-names")))]
mod $name {
#[no_mangle]
#[cfg_attr(not(all(windows, target_env = "gnu")), linkage = "weak")]
$(#[$($attr)*])*
extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
#[cfg(all(target_arch = "arm", not(feature = "mangled-names")))]
mod $alias {
#[no_mangle]
#[cfg_attr(not(all(windows, target_env = "gnu")), linkage = "weak")]
$(#[$($attr)*])*
extern "aapcs" fn $alias( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
#[cfg(not(target_arch = "arm"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// PowerPC usually uses `kf` rather than `tf` for `f128`. This is just an easy
// way to add an alias on those targets.
(
#[ppc_alias = $alias:ident]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(not(any(target_arch = "powerpc", target_arch = "powerpc64")))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
#[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $alias( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// C mem* functions are only generated when the "mem" feature is enabled.
(
#[mem_builtin]
$(#[$($attr:tt)*])*
pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
$(#[$($attr)*])*
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(all(feature = "mem", not(feature = "mangled-names")))]
mod $name {
$(#[$($attr)*])*
#[no_mangle]
#[cfg_attr(not(all(windows, target_env = "gnu")), linkage = "weak")]
unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
intrinsics!($($rest)*);
);
// Naked functions are special: we can't generate wrappers for them since
// they use a custom calling convention.
(
#[naked]
$(#[$($attr:tt)*])*
pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
// `#[naked]` definitions are referenced by other places, so we can't use `cfg` like the others
pub mod $name {
#[naked]
$(#[$($attr)*])*
#[cfg_attr(not(feature = "mangled-names"), no_mangle)]
#[cfg_attr(not(all(windows, target_env = "gnu")), linkage = "weak")]
pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// For some intrinsics, AVR uses a custom calling convention¹ that does not
// match our definitions here. Ideally we would just use hand-written naked
// functions, but that's quite a lot of code to port² - so for the time
// being we are just ignoring the problematic functions, letting avr-gcc
// (which is required to compile to AVR anyway) link them from libgcc.
//
// ¹ https://gcc.gnu.org/wiki/avr-gcc (see "Exceptions to the Calling
// Convention")
// ² https://github.com/gcc-mirror/gcc/blob/31048012db98f5ec9c2ba537bfd850374bdd771f/libgcc/config/avr/lib1funcs.S
(
#[avr_skip]
$(#[$($attr:tt)*])*
pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
#[cfg(not(target_arch = "avr"))]
intrinsics! {
$(#[$($attr)*])*
pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
}
intrinsics!($($rest)*);
);
// This is the final catch-all rule. At this point we generate an
// intrinsic with a conditional `#[no_mangle]` directive to avoid
// interfering with duplicate symbols and whatnot during testing.
//
// The implementation is placed in a separate module, to take advantage
// of the fact that rustc partitions functions into code generation
// units based on module they are defined in. As a result we will have
// a separate object file for each intrinsic. For further details see
// corresponding PR in rustc https://github.com/rust-lang/rust/pull/70846
//
// After the intrinsic is defined we just continue with the rest of the
// input we were given.
(
$(#[$($attr:tt)*])*
pub $(unsafe $(@ $empty:tt)?)? extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
$($body:tt)*
}
$($rest:tt)*
) => (
$(#[$($attr)*])*
pub $(unsafe $($empty)?)? extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
$($body)*
}
#[cfg(not(feature = "mangled-names"))]
mod $name {
$(#[$($attr)*])*
#[no_mangle]
#[cfg_attr(not(all(windows, target_env = "gnu")), linkage = "weak")]
$(unsafe $($empty)?)? extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
super::$name($($argname),*)
}
}
intrinsics!($($rest)*);
);
}
// Hack for LLVM expectations for ABI on windows. This is used by the
// `#[win64_128bit_abi_hack]` attribute recognized above
#[cfg(all(any(windows, target_os = "uefi"), target_pointer_width = "64"))]
pub mod win64_128bit_abi_hack {
#[repr(simd)]
pub struct U64x2([u64; 2]);
impl From<i128> for U64x2 {
fn from(i: i128) -> U64x2 {
use crate::int::DInt;
let j = i as u128;
U64x2([j.lo(), j.hi()])
}
}
impl From<u128> for U64x2 {
fn from(i: u128) -> U64x2 {
use crate::int::DInt;
U64x2([i.lo(), i.hi()])
}
}
}