forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRepeater.lua
90 lines (75 loc) · 3.29 KB
/
Repeater.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
------------------------------------------------------------------------
--[[ Repeater ]]--
-- Encapsulates an AbstractRecurrent instance (rnn) which is repeatedly
-- presented with the same input for rho time steps.
-- The output is a table of rho outputs of the rnn.
------------------------------------------------------------------------
assert(not nn.Repeater, "update nnx package : luarocks install nnx")
local Repeater, parent = torch.class('nn.Repeater', 'nn.AbstractSequencer')
function Repeater:__init(module, rho)
parent.__init(self)
assert(torch.type(rho) == 'number', "expecting number value for arg 2")
self.rho = rho
self.module = (not torch.isTypeOf(rnn, 'nn.AbstractRecurrent')) and nn.Recursor(module) or module
self.module:maxBPTTstep(rho) -- hijack rho (max number of time-steps for backprop)
self.modules[1] = self.module
self.output = {}
end
function Repeater:updateOutput(input)
self.module = self.module or self.rnn -- backwards compatibility
self.module:forget()
-- TODO make copy outputs optional
for step=1,self.rho do
self.output[step] = nn.rnn.recursiveCopy(self.output[step], self.module:updateOutput(input))
end
return self.output
end
function Repeater:updateGradInput(input, gradOutput)
assert(self.module.step - 1 == self.rho, "inconsistent rnn steps")
assert(torch.type(gradOutput) == 'table', "expecting gradOutput table")
assert(#gradOutput == self.rho, "gradOutput should have rho elements")
-- back-propagate through time (BPTT)
for step=self.rho,1,-1 do
local gradInput = self.module:updateGradInput(input, gradOutput[step])
if step == self.rho then
self.gradInput = nn.rnn.recursiveCopy(self.gradInput, gradInput)
else
nn.rnn.recursiveAdd(self.gradInput, gradInput)
end
end
return self.gradInput
end
function Repeater:accGradParameters(input, gradOutput, scale)
assert(self.module.step - 1 == self.rho, "inconsistent rnn steps")
assert(torch.type(gradOutput) == 'table', "expecting gradOutput table")
assert(#gradOutput == self.rho, "gradOutput should have rho elements")
-- back-propagate through time (BPTT)
for step=self.rho,1,-1 do
self.module:accGradParameters(input, gradOutput[step], scale)
end
end
function Repeater:maxBPTTstep(rho)
self.rho = rho
self.module:maxBPTTstep(rho)
end
function Repeater:accUpdateGradParameters(input, gradOutput, lr)
assert(self.module.step - 1 == self.rho, "inconsistent rnn steps")
assert(torch.type(gradOutput) == 'table', "expecting gradOutput table")
assert(#gradOutput == self.rho, "gradOutput should have rho elements")
-- back-propagate through time (BPTT)
for step=self.rho,1,-1 do
self.module:accUpdateGradParameters(input, gradOutput[step], lr)
end
end
function Repeater:__tostring__()
local tab = ' '
local line = '\n'
local str = torch.type(self) .. ' {' .. line
str = str .. tab .. '[ input, input, ..., input ]'.. line
str = str .. tab .. ' V V V '.. line
str = str .. tab .. tostring(self.modules[1]):gsub(line, line .. tab) .. line
str = str .. tab .. ' V V V '.. line
str = str .. tab .. '[output(1),output(2),...,output('..self.rho..')]' .. line
str = str .. '}'
return str
end