forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGRU.lua
170 lines (141 loc) · 5.71 KB
/
GRU.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
------------------------------------------------------------------------
--[[ GRU ]]--
-- Gated Recurrent Units architecture.
-- http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-gruGRU-rnn-with-python-and-theano/
-- Expects 1D or 2D input.
-- The first input in sequence uses zero value for cell and hidden state
------------------------------------------------------------------------
assert(not nn.GRU, "update nnx package : luarocks install nnx")
local GRU, parent = torch.class('nn.GRU', 'nn.AbstractRecurrent')
function GRU:__init(inputSize, outputSize, rho)
parent.__init(self, rho or 9999)
self.inputSize = inputSize
self.outputSize = outputSize
-- build the model
self.recurrentModule = self:buildModel()
-- make it work with nn.Container
self.modules[1] = self.recurrentModule
self.sharedClones[1] = self.recurrentModule
-- for output(0), cell(0) and gradCell(T)
self.zeroTensor = torch.Tensor()
self.cells = {}
self.gradCells = {}
end
-------------------------- factory methods -----------------------------
function GRU:buildModel()
-- input : {input, prevOutput}
-- output : {output}
-- Calculate all four gates in one go : input, hidden, forget, output
self.i2g = nn.Linear(self.inputSize, 2*self.outputSize)
self.o2g = nn.LinearNoBias(self.outputSize, 2*self.outputSize)
local para = nn.ParallelTable():add(self.i2g):add(self.o2g)
local gates = nn.Sequential()
gates:add(para)
gates:add(nn.CAddTable())
-- Reshape to (batch_size, n_gates, hid_size)
-- Then slize the n_gates dimension, i.e dimension 2
gates:add(nn.Reshape(2,self.outputSize))
gates:add(nn.SplitTable(1,2))
local transfer = nn.ParallelTable()
transfer:add(nn.Sigmoid()):add(nn.Sigmoid())
gates:add(transfer)
local concat = nn.ConcatTable()
concat:add(nn.Identity()):add(gates)
local seq = nn.Sequential()
seq:add(concat)
seq:add(nn.FlattenTable()) -- x(t), s(t-1), r, z
-- Rearrange to x(t), s(t-1), r, z, s(t-1)
local concat = nn.ConcatTable() --
concat:add(nn.NarrowTable(1,4)):add(nn.SelectTable(2))
seq:add(concat):add(nn.FlattenTable())
-- h
local hidden = nn.Sequential()
local concat = nn.ConcatTable()
local t1 = nn.Sequential()
t1:add(nn.SelectTable(1)):add(nn.Linear(self.inputSize, self.outputSize))
local t2 = nn.Sequential()
t2:add(nn.NarrowTable(2,2)):add(nn.CMulTable()):add(nn.LinearNoBias(self.outputSize, self.outputSize))
concat:add(t1):add(t2)
hidden:add(concat):add(nn.CAddTable()):add(nn.Tanh())
local z1 = nn.Sequential()
z1:add(nn.SelectTable(4))
z1:add(nn.SAdd(-1, true)) -- Scalar add & negation
local z2 = nn.Sequential()
z2:add(nn.NarrowTable(4,2))
z2:add(nn.CMulTable())
local o1 = nn.Sequential()
local concat = nn.ConcatTable()
concat:add(hidden):add(z1)
o1:add(concat):add(nn.CMulTable())
local o2 = nn.Sequential()
local concat = nn.ConcatTable()
concat:add(o1):add(z2)
o2:add(concat):add(nn.CAddTable())
seq:add(o2)
return seq
end
------------------------- forward backward -----------------------------
function GRU:updateOutput(input)
local prevOutput
if self.step == 1 then
prevOutput = self.userPrevOutput or self.zeroTensor
if input:dim() == 2 then
self.zeroTensor:resize(input:size(1), self.outputSize):zero()
else
self.zeroTensor:resize(self.outputSize):zero()
end
else
-- previous output and cell of this module
prevOutput = self.outputs[self.step-1]
end
-- output(t) = gru{input(t), output(t-1)}
local output
if self.train ~= false then
self:recycle()
local recurrentModule = self:getStepModule(self.step)
-- the actual forward propagation
output = recurrentModule:updateOutput{input, prevOutput}
else
output = self.recurrentModule:updateOutput{input, prevOutput}
end
self.outputs[self.step] = output
self.output = output
self.step = self.step + 1
self.gradPrevOutput = nil
self.updateGradInputStep = nil
self.accGradParametersStep = nil
-- note that we don't return the cell, just the output
return self.output
end
function GRU:_updateGradInput(input, gradOutput)
assert(self.step > 1, "expecting at least one updateOutput")
local step = self.updateGradInputStep - 1
assert(step >= 1)
local gradInput
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
if self.gradPrevOutput then
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], self.gradPrevOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
end
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local inputTable = {input, output}
local gradInputTable = recurrentModule:updateGradInput(inputTable, gradOutput)
gradInput, self.gradPrevOutput = unpack(gradInputTable)
if self.userPrevOutput then self.userGradPrevOutput = self.gradPrevOutput end
return gradInput
end
function GRU:_accGradParameters(input, gradOutput, scale)
local step = self.accGradParametersStep - 1
assert(step >= 1)
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local output = (step == 1) and (self.userPrevOutput or self.zeroTensor) or self.outputs[step-1]
local inputTable = {input, output}
local gradOutput = (step == self.step-1) and gradOutput or self._gradOutputs[step]
recurrentModule:accGradParameters(inputTable, gradOutput, scale)
return gradInput
end