-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun_sdf.py
377 lines (289 loc) · 15.6 KB
/
run_sdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os, sys
import numpy as np
import json
import random
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm, trange
import scipy.io
import matplotlib.pyplot as plt
from helpers import *
from MLP import *
#from PIL import Image
import cv2 as cv
import time
import random
import string
from pyhocon import ConfigFactory
from models.fields import RenderingNetwork, SDFNetwork, SingleVarianceNetwork, NeRF
from models.renderer import NeuSRenderer
import trimesh
from itertools import groupby
from operator import itemgetter
from load_data import *
import logging
import argparse
from math import ceil
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
class Runner:
def __init__(self, conf, is_continue=False, write_config=True):
conf_path = conf
f = open(conf_path)
conf_text = f.read()
self.is_continue = is_continue
self.conf = ConfigFactory.parse_string(conf_text)
self.write_config = write_config
def set_params(self):
self.expID = self.conf.get_string('conf.expID')
dataset = self.conf.get_string('conf.dataset')
self.image_setkeyname = self.conf.get_string('conf.image_setkeyname')
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.dataset = dataset
# Training parameters
self.end_iter = self.conf.get_int('train.end_iter')
self.N_rand = self.conf.get_int('train.num_select_pixels') #H*W
self.arc_n_samples = self.conf.get_int('train.arc_n_samples')
self.save_freq = self.conf.get_int('train.save_freq')
self.report_freq = self.conf.get_int('train.report_freq')
self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq')
self.learning_rate = self.conf.get_float('train.learning_rate')
self.learning_rate_alpha = self.conf.get_float('train.learning_rate_alpha')
self.warm_up_end = self.conf.get_float('train.warm_up_end', default=0.0)
self.anneal_end = self.conf.get_float('train.anneal_end', default=0.0)
self.percent_select_true = self.conf.get_float('train.percent_select_true', default=0.5)
self.r_div = self.conf.get_bool('train.r_div')
# Weights
self.igr_weight = self.conf.get_float('train.igr_weight')
self.variation_reg_weight = self.conf.get_float('train.variation_reg_weight')
self.px_sample_min_weight = self.conf.get_float('train.px_sample_min_weight')
self.ray_n_samples = self.conf['model.neus_renderer']['n_samples']
self.base_exp_dir = './experiments/{}'.format(self.expID)
self.randomize_points = self.conf.get_float('train.randomize_points')
self.select_px_method = self.conf.get_string('train.select_px_method')
self.select_valid_px = self.conf.get_bool('train.select_valid_px')
self.x_max = self.conf.get_float('mesh.x_max')
self.x_min = self.conf.get_float('mesh.x_min')
self.y_max = self.conf.get_float('mesh.y_max')
self.y_min = self.conf.get_float('mesh.y_min')
self.z_max = self.conf.get_float('mesh.z_max')
self.z_min = self.conf.get_float('mesh.z_min')
self.level_set = self.conf.get_float('mesh.level_set')
self.data = load_data(dataset)
self.H, self.W = self.data[self.image_setkeyname][0].shape
self.r_min = self.data["min_range"]
self.r_max = self.data["max_range"]
self.phi_min = -self.data["vfov"]/2
self.phi_max = self.data["vfov"]/2
self.vfov = self.data["vfov"]
self.hfov = self.data["hfov"]
self.cube_center = torch.Tensor([(self.x_max + self.x_min)/2, (self.y_max + self.y_min)/2, (self.z_max + self.z_min)/2])
self.timef = self.conf.get_bool('conf.timef')
self.end_iter = self.conf.get_int('train.end_iter')
self.start_iter = self.conf.get_int('train.start_iter')
self.object_bbox_min = self.conf.get_list('mesh.object_bbox_min')
self.object_bbox_max = self.conf.get_list('mesh.object_bbox_max')
r_increments = []
self.sonar_resolution = (self.r_max-self.r_min)/self.H
for i in range(self.H):
r_increments.append(i*self.sonar_resolution + self.r_min)
self.r_increments = torch.FloatTensor(r_increments).to(self.device)
extrapath = './experiments/{}'.format(self.expID)
if not os.path.exists(extrapath):
os.makedirs(extrapath)
extrapath = './experiments/{}/checkpoints'.format(self.expID)
if not os.path.exists(extrapath):
os.makedirs(extrapath)
extrapath = './experiments/{}/model'.format(self.expID)
if not os.path.exists(extrapath):
os.makedirs(extrapath)
if self.write_config:
with open('./experiments/{}/config.json'.format(self.expID), 'w') as f:
json.dump(self.conf.__dict__, f, indent = 2)
# Create all image tensors beforehand to speed up process
self.i_train = np.arange(len(self.data[self.image_setkeyname]))
self.coords_all_ls = [(x, y) for x in np.arange(self.H) for y in np.arange(self.W)]
self.coords_all_set = set(self.coords_all_ls)
#self.coords_all = torch.from_numpy(np.array(self.coords_all_ls)).to(self.device)
self.del_coords = []
for y in np.arange(self.W):
tmp = [(x, y) for x in np.arange(0, self.ray_n_samples)]
self.del_coords.extend(tmp)
self.coords_all = list(self.coords_all_set - set(self.del_coords))
self.coords_all = torch.LongTensor(self.coords_all).to(self.device)
self.criterion = torch.nn.L1Loss(reduction='sum')
self.model_list = []
self.writer = None
# Networks
params_to_train = []
self.sdf_network = SDFNetwork(**self.conf['model.sdf_network']).to(self.device)
self.deviation_network = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device)
self.color_network = RenderingNetwork(**self.conf['model.rendering_network']).to(self.device)
params_to_train += list(self.sdf_network.parameters())
params_to_train += list(self.deviation_network.parameters())
params_to_train += list(self.color_network.parameters())
self.optimizer = torch.optim.Adam(params_to_train, lr=self.learning_rate)
self.iter_step = 0
self.renderer = NeuSRenderer(self.sdf_network,
self.deviation_network,
self.color_network,
self.base_exp_dir,
self.expID,
**self.conf['model.neus_renderer'])
latest_model_name = None
if self.is_continue:
model_list_raw = os.listdir(os.path.join(self.base_exp_dir, 'checkpoints'))
model_list = []
for model_name in model_list_raw:
if model_name[-3:] == 'pth': #and int(model_name[5:-4]) <= self.end_iter:
model_list.append(model_name)
model_list.sort()
latest_model_name = model_list[-1]
if latest_model_name is not None:
logging.info('Find checkpoint: {}'.format(latest_model_name))
self.load_checkpoint(latest_model_name)
def getRandomImgCoordsByPercentage(self, target):
true_coords = []
for y in np.arange(self.W):
col = target[:, y]
gt0 = col > 0
indTrue = np.where(gt0)[0]
if len(indTrue) > 0:
true_coords.extend([(x, y) for x in indTrue])
sampling_perc = int(self.percent_select_true*len(true_coords))
true_coords = random.sample(true_coords, sampling_perc)
true_coords = list(set(true_coords) - set(self.del_coords))
true_coords = torch.LongTensor(true_coords).to(self.device)
target = torch.Tensor(target).to(self.device)
if self.iter_step%len(self.data[self.image_setkeyname]) !=0:
N_rand = 0
else:
N_rand = self.N_rand
N_rand = self.N_rand
coords = select_coordinates(self.coords_all, target, N_rand, self.select_valid_px)
coords = torch.cat((coords, true_coords), dim=0)
return coords, target
def train(self):
loss_arr = []
for i in trange(self.start_iter, self.end_iter, len(self.data[self.image_setkeyname])):
i_train = np.arange(len(self.data[self.image_setkeyname]))
np.random.shuffle(i_train)
loss_total = 0
sum_intensity_loss = 0
sum_eikonal_loss = 0
sum_total_variational = 0
for j in trange(0, len(i_train)):
img_i = i_train[j]
target = self.data[self.image_setkeyname][img_i]
pose = self.data["sensor_poses"][img_i]
if self.select_px_method == "byprob":
coords, target = self.getRandomImgCoordsByProbability(target)
else:
coords, target = self.getRandomImgCoordsByPercentage(target)
n_pixels = len(coords)
rays_d, dphi, r, rs, pts, dists = get_arcs(self.H, self.W, self.phi_min, self.phi_max, self.r_min, self.r_max, torch.Tensor(pose), n_pixels,
self.arc_n_samples, self.ray_n_samples, self.hfov, coords, self.r_increments,
self.randomize_points, self.device, self.cube_center)
target_s = target[coords[:, 0], coords[:, 1]]
render_out = self.renderer.render_sonar(rays_d, pts, dists, n_pixels,
self.arc_n_samples, self.ray_n_samples,
cos_anneal_ratio=self.get_cos_anneal_ratio())
intensityPointsOnArc = render_out["intensityPointsOnArc"]
gradient_error = render_out['gradient_error'] #.reshape(n_pixels, self.arc_n_samples, -1)
eikonal_loss = gradient_error.sum()*(1/(self.arc_n_samples*self.ray_n_samples*n_pixels))
variation_regularization = render_out['variation_error']*(1/(self.arc_n_samples*self.ray_n_samples*n_pixels))
if self.r_div:
intensity_fine = (torch.divide(intensityPointsOnArc, rs)*render_out["weights"]).sum(dim=1)
else:
intensity_fine = render_out['color_fine']
intensity_error = self.criterion(intensity_fine, target_s)*(1/n_pixels)
loss = intensity_error + eikonal_loss * self.igr_weight + variation_regularization*self.variation_reg_weight
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
with torch.no_grad():
lossNG = intensity_error + eikonal_loss * self.igr_weight
loss_total += lossNG.cpu().numpy().item()
sum_intensity_loss += intensity_error.cpu().numpy().item()
sum_eikonal_loss += eikonal_loss.cpu().numpy().item()
sum_total_variational += variation_regularization.cpu().numpy().item()
self.iter_step += 1
self.update_learning_rate()
del(target)
del(target_s)
del(rays_d)
del(pts)
del(dists)
del(render_out)
del(coords)
with torch.no_grad():
l = loss_total/len(i_train)
iL = sum_intensity_loss/len(i_train)
eikL = sum_eikonal_loss/len(i_train)
varL = sum_total_variational/len(i_train)
loss_arr.append(l)
if i ==0 or i % self.save_freq == 0:
logging.info('iter:{} ********************* SAVING CHECKPOINT ****************'.format(self.optimizer.param_groups[0]['lr']))
self.save_checkpoint()
if i % self.report_freq == 0:
print('iter:{:8>d} "Loss={} | intensity Loss={} " | eikonal loss={} | total variation loss = {} | lr={}'.format(self.iter_step, l, iL, eikL, varL, self.optimizer.param_groups[0]['lr']))
if i == 0 or i % self.val_mesh_freq == 0:
self.validate_mesh(threshold = self.level_set)
def save_checkpoint(self):
checkpoint = {
'sdf_network_fine': self.sdf_network.state_dict(),
'variance_network_fine': self.deviation_network.state_dict(),
'color_network_fine': self.color_network.state_dict(),
'optimizer': self.optimizer.state_dict(),
'iter_step': self.iter_step,
}
os.makedirs(os.path.join(self.base_exp_dir, 'checkpoints'), exist_ok=True)
torch.save(checkpoint, os.path.join(self.base_exp_dir, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step)))
def load_checkpoint(self, checkpoint_name):
checkpoint = torch.load(os.path.join(self.base_exp_dir, 'checkpoints', checkpoint_name), map_location=self.device)
self.sdf_network.load_state_dict(checkpoint['sdf_network_fine'])
self.deviation_network.load_state_dict(checkpoint['variance_network_fine'])
self.color_network.load_state_dict(checkpoint['color_network_fine'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.iter_step = checkpoint['iter_step']
def update_learning_rate(self):
if self.iter_step < self.warm_up_end:
learning_factor = self.iter_step / self.warm_up_end
else:
alpha = self.learning_rate_alpha
progress = (self.iter_step - self.warm_up_end) / (self.end_iter - self.warm_up_end)
learning_factor = (np.cos(np.pi * progress) + 1.0) * 0.5 * (1 - alpha) + alpha
for g in self.optimizer.param_groups:
g['lr'] = self.learning_rate * learning_factor
def get_cos_anneal_ratio(self):
if self.anneal_end == 0.0:
return 1.0
else:
return np.min([1.0, self.iter_step / self.anneal_end])
def validate_mesh(self, world_space=False, resolution=64, threshold=0.0):
bound_min = torch.tensor(self.object_bbox_min, dtype=torch.float32)
bound_max = torch.tensor(self.object_bbox_max, dtype=torch.float32)
vertices, triangles =\
self.renderer.extract_geometry(bound_min, bound_max, resolution=resolution, threshold=threshold)
os.makedirs(os.path.join(self.base_exp_dir, 'meshes'), exist_ok=True)
if world_space:
vertices = vertices * self.dataset.scale_mats_np[0][0, 0] + self.dataset.scale_mats_np[0][:3, 3][None]
mesh = trimesh.Trimesh(vertices, triangles)
mesh.export(os.path.join(self.base_exp_dir, 'meshes', '{:0>8d}.ply'.format(self.iter_step)))
if __name__=='__main__':
torch.set_default_tensor_type('torch.cuda.FloatTensor')
FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s"
logging.getLogger('matplotlib.font_manager').disabled = True
logging.basicConfig(level=logging.DEBUG, format=FORMAT)
parser = argparse.ArgumentParser()
parser.add_argument('--conf', type=str, default="./confs/conf.conf")
parser.add_argument('--is_continue', default=False, action="store_true")
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
torch.cuda.set_device(args.gpu)
runner = Runner(args.conf, args.is_continue)
runner.set_params()
runner.train()