-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmodel.py
100 lines (81 loc) · 2.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch as T
import torch.nn as nn
import torchvision.models as models
import torch.nn.functional as F
def get_cuda(tensor):
if T.cuda.is_available():
tensor = tensor.cuda()
return tensor
class Encoder(nn.Module):
def __init__(self, opt):
super(Encoder, self).__init__()
self.resnet = models.resnet18(pretrained=True)
self.resnet.avgpool = nn.AvgPool2d(4,1,0)
self.resnet = nn.Sequential(*list(self.resnet.children())[:-1])
self.x_to_mu = nn.Linear(512,opt.n_z)
self.x_to_logvar = nn.Linear(512, opt.n_z)
def reparameterize(self, x):
mu = self.x_to_mu(x)
logvar = self.x_to_logvar(x)
z = T.randn(mu.size())
z = get_cuda(z)
z = mu + z * T.exp(0.5 * logvar)
kld = (-0.5 * T.sum(1 + logvar - mu.pow(2) - logvar.exp(), 1))
return z, kld
def forward(self, x):
x = self.resnet(x).squeeze()
z, kld = self.reparameterize(x)
return z, kld
class Generator(nn.Module):
def __init__(self, opt):
super(Generator, self).__init__()
self.convs = nn.Sequential(
nn.ConvTranspose2d(opt.n_z, 512, 4, 1, 0, bias=False),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 384, 4, 2, 1, bias=False),
nn.BatchNorm2d(384),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(384, 192, 4, 2, 1, bias=False),
nn.BatchNorm2d(192),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(192, 96, 4, 2, 1, bias=False),
nn.BatchNorm2d(96),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(96, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(inplace=True),
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, z):
z = z.view(z.size(0), z.size(1), 1, 1)
x_gen = self.convs(z)
return x_gen
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.convs = nn.Sequential(
nn.Conv2d(3, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
)
self.last_conv = nn.Sequential(
nn.Conv2d(512, 1, 4, 1, 0),
nn.Sigmoid()
)
def forward(self, x):
f_d = self.convs(x)
x = self.last_conv(f_d)
f_d = F.avg_pool2d(f_d, 4, 1, 0)
return x.squeeze(), f_d.squeeze()