-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathzfc.v
1711 lines (1326 loc) · 44.9 KB
/
zfc.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(* Contribution to the Coq Library V6.3 (July 1999) *)
(************************************************************************)
(* Zermolo Set Theory *)
(* *)
(* Benjamin Werner *)
(************************************************************************)
(* This is an encoding of usual Set Theory, simillar to Peter Aczel's work *)
(* in the early 80's. The main difference is that the propositions here *)
(* live in the impredicative world of "Prop". Thus, priority is given to *)
(* expressivity against constructivity. *)
(* Since the definition of Sets is the same for both approaches, I added *)
(* most of Aczel's encoding of CZF at the end of the file. Many *)
(* definitions are common to both aproaches. *)
Set Asymmetric Patterns.
(* The type representing sets (Ensemble = french for set) *)
Inductive Ens : Type :=
sup : forall A : Type, (A -> Ens) -> Ens.
(* Existential quantification *)
Inductive EXType (P : Type) (Q : P -> Prop) : Prop :=
EXTypei : forall x : P, Q x -> EXType P Q.
(* Cartesian product in Type *)
Inductive prod_t (A B : Type) : Type :=
pair_t : A -> B -> prod_t A B.
(* Existential on the Type level *)
Inductive depprod (A : Type) (P : A -> Type) : Type :=
dep_i : forall x : A, P x -> depprod A P.
(* Recursive Definition of the extentional equality on sets *)
Definition EQ : Ens -> Ens -> Prop.
simple induction 1; intros A f eq1.
simple induction 1; intros B g eq2.
apply and.
exact (forall x : A, EXType _ (fun y : B => eq1 x (g y))).
exact (forall y : B, EXType _ (fun x : A => eq1 x (g y))).
Defined.
(* Membership on sets *)
Definition IN (E1 E2 : Ens) : Prop :=
match E2 with
| sup A f => EXType _ (fun y : A => EQ E1 (f y))
end.
(* INCLUSION *)
Definition INC : Ens -> Ens -> Prop.
intros E1 E2.
exact (forall E : Ens, IN E E1 -> IN E E2).
Defined.
(* EQ is an equivalence relation *)
Theorem EQ_refl : forall E : Ens, EQ E E.
simple induction E.
intros A f HR.
simpl in |- *.
split; intros.
exists x; auto.
exists y; auto.
Qed.
Theorem EQ_tran : forall E1 E2 E3 : Ens, EQ E1 E2 -> EQ E2 E3 -> EQ E1 E3.
simple induction E1; intros A1 f1 r1; simple induction E2; intros A2 f2 r2;
simple induction E3; intros A3 f3 r3; simpl in |- *;
intros e1 e2.
split; (elim e1; intros I1 I2; elim e2; intros I3 I4).
intros a1; elim (I1 a1); intros a2.
elim (I3 a2); intros a3.
exists a3.
apply r1 with (f2 a2); auto.
intros a3; elim (I4 a3); intros a2; elim (I2 a2); intros a1; exists a1.
apply r1 with (f2 a2); auto.
Qed.
Theorem EQ_sym : forall E1 E2 : Ens, EQ E1 E2 -> EQ E2 E1.
simple induction E1; intros A1 f1 r1; simple induction E2; intros A2 f2 r2;
simpl in |- *; simple induction 1; intros e1 e2; split.
intros a2; elim (e2 a2); intros a1 H1; exists a1; auto.
intros a1; elim (e1 a1); intros a2 H2; exists a2; auto.
Qed.
Theorem EQ_INC : forall E E' : Ens, EQ E E' -> INC E E'.
simple induction E; intros A f r; simple induction E'; intros A' f' r';
simpl in |- *; simple induction 1; intros e1 e2; unfold INC in |- *;
simpl in |- *.
intros C; simple induction 1; intros a ea; elim (e1 a); intros a' ea';
exists a'.
apply EQ_tran with (f a); assumption.
Qed.
Hint Resolve EQ_sym EQ_refl EQ_INC: zfc.
(* easy lemma *)
Theorem INC_EQ : forall E E' : Ens, INC E E' -> INC E' E -> EQ E E'.
simple induction E; intros A f r; simple induction E'; intros A' f' r';
unfold INC in |- *; simpl in |- *; intros I1 I2; split.
intros a; apply I1.
exists a; auto with zfc.
intros a'; cut (EXType A (fun x : A => EQ (f' a') (f x))).
simple induction 1; intros a ea; exists a; auto with zfc.
apply I2; exists a'; auto with zfc.
Qed.
Hint Resolve INC_EQ: zfc.
(* Membership is extentional (i.e. is stable w.r.t. EQ) *)
Theorem IN_sound_left :
forall E E' E'' : Ens, EQ E E' -> IN E E'' -> IN E' E''.
simple induction E''; intros A'' f'' r'' e; simpl in |- *; simple induction 1;
intros a'' p; exists a''; apply EQ_tran with E; auto with zfc.
Qed.
Theorem IN_sound_right :
forall E E' E'' : Ens, EQ E' E'' -> IN E E' -> IN E E''.
simple induction E'; intros A' f' r'; simple induction E'';
intros A'' f'' r''; simpl in |- *; simple induction 1;
intros e1 e2; simple induction 1; intros a' e'; elim (e1 a');
intros a'' e''; exists a''; apply EQ_tran with (f' a');
assumption.
Qed.
(* Inclusion is reflexive, transitive, extentional *)
Theorem INC_refl : forall E : Ens, INC E E.
unfold INC in |- *; auto with zfc.
Qed.
Theorem INC_tran : forall E E' E'' : Ens, INC E E' -> INC E' E'' -> INC E E''.
unfold INC in |- *; auto with zfc.
Qed.
Theorem INC_sound_left :
forall E E' E'' : Ens, EQ E E' -> INC E E'' -> INC E' E''.
simple induction E''; unfold INC in |- *; simpl in |- *;
intros A f HR e H1 E0 i; apply H1.
apply IN_sound_right with E'; auto with zfc.
Qed.
Theorem INC_sound_right :
forall E E' E'' : Ens, EQ E' E'' -> INC E E' -> INC E E''.
simple induction E'; simple induction E''; unfold INC in |- *; simpl in |- *;
intros.
elim (H2 E0); try assumption; intros.
elim H1; intros HA HB; elim (HA x); intros.
exists x0; apply EQ_tran with (e x); auto with zfc.
Qed.
(* Useful types (actually top and bottom) *)
Inductive Un : Set :=
void : Un.
Inductive F : Set :=.
(* The empty set (vide = french for empty) *)
Definition Vide : Ens := sup F (fun f : F => match f return Ens with
end).
(* The axioms of the empty set *)
Theorem Vide_est_vide : forall E : Ens, IN E Vide -> F.
unfold Vide in |- *; simpl in |- *; intros E H; cut False.
simple induction 1.
elim H; intros x; elim x.
Qed.
Theorem tout_vide_est_Vide :
forall E : Ens, (forall E' : Ens, IN E' E -> F) -> EQ E Vide.
unfold Vide in |- *; simple induction E; simpl in |- *; intros A e H H0;
split.
intros; elim (H0 (e x)); auto with zfc.
exists x; auto with zfc.
simple induction y.
Qed.
(* Pair *)
Definition Paire : forall E E' : Ens, Ens.
intros.
apply (sup bool).
simple induction 1.
exact E.
exact E'.
Defined.
(* The pair construction is extentional *)
Theorem Paire_sound_left :
forall A A' B : Ens, EQ A A' -> EQ (Paire A B) (Paire A' B).
unfold Paire in |- *.
simpl in |- *.
intros; split.
simple induction x.
exists true; auto with zfc.
exists false; auto with zfc.
simple induction y; simpl in |- *.
exists true; auto with zfc.
exists false; auto with zfc.
Qed.
Theorem Paire_sound_right :
forall A B B' : Ens, EQ B B' -> EQ (Paire A B) (Paire A B').
unfold Paire in |- *; simpl in |- *; intros; split.
simple induction x.
exists true; auto with zfc.
exists false; auto with zfc.
simple induction y.
exists true; auto with zfc.
exists false; auto with zfc.
Qed.
Hint Resolve Paire_sound_right Paire_sound_left: zfc.
(* The axioms of the pair *)
Theorem IN_Paire_left : forall E E' : Ens, IN E (Paire E E').
unfold Paire in |- *; simpl in |- *; exists true; simpl in |- *;
auto with zfc.
Qed.
Theorem IN_Paire_right : forall E E' : Ens, IN E' (Paire E E').
unfold Paire in |- *; simpl in |- *; exists false; simpl in |- *;
auto with zfc.
Qed.
Theorem Paire_IN :
forall E E' A : Ens, IN A (Paire E E') -> EQ A E \/ EQ A E'.
unfold Paire in |- *; simpl in |- *.
simple induction 1; intros b; elim b; simpl in |- *; auto with zfc.
Qed.
Hint Resolve IN_Paire_left IN_Paire_right Vide_est_vide: zfc.
(* The singleton set *)
(* Note that we could define it directly using the base type Un *)
Definition Sing (E : Ens) := Paire E E.
(* The axioms *)
Theorem IN_Sing : forall E : Ens, IN E (Sing E).
unfold Sing in |- *; auto with zfc.
Qed.
Theorem IN_Sing_EQ : forall E E' : Ens, IN E (Sing E') -> EQ E E'.
unfold Sing in |- *; intros E E' H; elim (Paire_IN E' E' E);
auto with zfc.
Qed.
Hint Resolve IN_Sing IN_Sing_EQ: zfc.
Theorem Sing_sound : forall A A' : Ens, EQ A A' -> EQ (Sing A) (Sing A').
unfold Sing in |- *; intros; apply EQ_tran with (Paire A A');
auto with zfc.
Qed.
Hint Resolve Sing_sound: zfc.
Theorem EQ_Sing_EQ : forall E1 E2 : Ens, EQ (Sing E1) (Sing E2) -> EQ E1 E2.
intros; cut (IN E1 (Sing E2)).
intros; auto with zfc.
apply IN_sound_right with (Sing E1); auto with zfc.
Qed.
Hint Resolve EQ_Sing_EQ: zfc.
(* We here need sigma types -- i.e. computational existentials *)
Inductive sig (A : Type) (P : A -> Prop) : Type :=
exist : forall x : A, P x -> sig A P.
(* The set obtained by the comprehension (or separation) axiom *)
Definition Comp : Ens -> (Ens -> Prop) -> Ens.
simple induction 1; intros A f fr P.
apply (sup (sig A (fun x => P (f x)))).
simple induction 1; intros x p; exact (f x).
Defined.
(* The comprehension/separation axioms *)
Theorem Comp_INC : forall (E : Ens) (P : Ens -> Prop), INC (Comp E P) E.
unfold Comp, INC in |- *; simple induction E; simpl in |- *; intros.
elim H0; simple induction x; intros; exists x0; auto with zfc.
Qed.
Theorem IN_Comp_P :
forall (E A : Ens) (P : Ens -> Prop),
(forall w1 w2 : Ens, P w1 -> EQ w1 w2 -> P w2) -> IN A (Comp E P) -> P A.
simple induction E; simpl in |- *; intros B f Hr A P H i; elim i; intros c;
elim c; simpl in |- *; intros x q e; apply H with (f x);
auto with zfc.
Qed.
Theorem IN_P_Comp :
forall (E A : Ens) (P : Ens -> Prop),
(forall w1 w2 : Ens, P w1 -> EQ w1 w2 -> P w2) ->
IN A E -> P A -> IN A (Comp E P).
simple induction E; simpl in |- *; intros B f HR A P H i; elim i;
simpl in |- *; intros.
cut (P (f x)).
intros Pf.
exists (exist B (fun x : B => P (f x)) x Pf); simpl in |- *;
auto with zfc.
apply H with A; auto with zfc.
Qed.
(* Again, extentionality is not stated, but easy *)
(* Projections of a set: *)
(* 1: its base type *)
Definition pi1 : Ens -> Type.
simple induction 1.
intros A f r.
exact A.
Defined.
(* 2: the function *)
Definition pi2 : forall E : Ens, pi1 E -> Ens.
simple induction E.
intros A f r.
exact f.
Defined.
(* The Union set *)
Definition Union : forall E : Ens, Ens.
simple induction 1; intros A f r.
apply (sup (depprod A (fun x : A => pi1 (f x)))).
simple induction 1; intros a b.
exact (pi2 (f a) b).
Defined.
Theorem EQ_EXType :
forall E E' : Ens,
EQ E E' ->
forall a : pi1 E,
EXType (pi1 E') (fun b : pi1 E' => EQ (pi2 E a) (pi2 E' b)).
simple induction E; intros A f r; simple induction E'; intros A' f' r';
simpl in |- *; simple induction 1; intros e1 e2 a.
apply e1.
Defined.
Theorem IN_EXType :
forall E E' : Ens,
IN E' E -> EXType (pi1 E) (fun a : pi1 E => EQ E' (pi2 E a)).
simple induction E; simpl in |- *.
intros A f r.
simple induction 1; simpl in |- *.
intros.
exists x; auto with zfc.
Qed.
(* The union axioms *)
Theorem IN_Union :
forall E E' E'' : Ens, IN E' E -> IN E'' E' -> IN E'' (Union E).
simple induction E; intros A f r.
intros.
simpl in |- *.
elim (IN_EXType (sup A f) E' H).
intros x e.
cut (EQ (pi2 (sup A f) x) E'); auto with zfc.
intros e1.
cut (IN E'' (pi2 (sup A f) x)).
intros i1.
elim (IN_EXType _ _ i1).
intros x0 e2.
simpl in x0.
exists (dep_i A (fun x : A => pi1 (f x)) x x0).
simpl in |- *.
exact e2.
apply IN_sound_right with E'; auto with zfc.
Qed.
Theorem IN_INC_Union : forall E E' : Ens, IN E' E -> INC E' (Union E).
unfold INC in |- *; simple induction E; intros A f r; unfold Union in |- *.
intros E' i E'' i'; simpl in |- *; elim (IN_EXType (sup A f) E' i).
intros a e; simpl in a; simpl in e.
elim (IN_EXType E' E'' i').
cut (IN E'' (f a)).
intros i'' a' e''; elim (IN_EXType _ _ i''); simpl in |- *; intros aa ee.
exists (dep_i A (fun x : A => pi1 (f x)) a aa); auto with zfc.
apply IN_sound_right with E'; auto with zfc.
Qed.
Theorem Union_IN :
forall E E' : Ens,
IN E' (Union E) -> EXType _ (fun E1 : Ens => IN E1 E /\ IN E' E1).
simple induction E; unfold Union in |- *; simpl in |- *; intros A f r.
simple induction 1.
simple induction x.
intros a b; simpl in |- *.
intros.
exists (f a).
split.
exists a; auto with zfc.
apply IN_sound_left with (pi2 (f a) b); auto with zfc.
simpl in |- *.
generalize b; elim (f a); simpl in |- *.
intros.
exists b0; auto with zfc.
Qed.
(* extentionality of union *)
Theorem Union_sound : forall E E' : Ens, EQ E E' -> EQ (Union E) (Union E').
unfold Union in |- *; simple induction E; intros A f r; simple induction E';
intros A' f' r'; simpl in |- *; simple induction 1;
intros e1 e2; split.
intros x; elim x; intros a aa; elim (e1 a); intros a' ea.
elim (EQ_EXType (f a) (f' a') ea aa); intros aa' eaa.
exists (dep_i A' (fun x : A' => pi1 (f' x)) a' aa'); simpl in |- *;
auto with zfc.
intros c'; elim c'; intros a' aa'; elim (e2 a'); intros a ea.
cut (EQ (f' a') (f a)).
2: auto with zfc.
intros ea'; elim (EQ_EXType (f' a') (f a) ea' aa'); intros aa eaa.
exists (dep_i A (fun x : A => pi1 (f x)) a aa); auto with zfc.
Qed.
(* The union construction is monotone w.r.t. inclusion *)
Theorem Union_mon : forall E E' : Ens, INC E E' -> INC (Union E) (Union E').
unfold INC in |- *; intros E E' IEE E'' IEE''.
elim (Union_IN E E'').
intros E'''; simple induction 1; intros I1 I2.
apply IN_Union with E'''; auto with zfc.
auto with zfc.
Qed.
(* The Intersection set *)
Definition Inter (E : Ens) : Ens :=
match E with
| sup A f =>
sup _
(fun
c : depprod _
(fun a : A =>
depprod _
(fun b : pi1 (f a) =>
forall x : A, IN (pi2 (f a) b) (f x))) =>
match c with
| dep_i a (dep_i b p) => pi2 (f a) b
end)
end.
(* the axioms *)
Theorem IN_Inter_all :
forall E E' : Ens,
IN E' (Inter E) -> forall E'' : Ens, IN E'' E -> IN E' E''.
simple induction E; intros A f r; simpl in |- *; intros E'.
simple induction 1; intros c; elim c; intros a ca; elim ca; intros aa paa;
simpl in |- *.
intros e E'' e''.
elim e''; intros a1 ea1.
apply IN_sound_right with (f a1); auto with zfc.
apply IN_sound_left with (pi2 (f a) aa); auto with zfc.
Qed.
Theorem all_IN_Inter :
forall E E' E'' : Ens,
IN E'' E -> (forall E'' : Ens, IN E'' E -> IN E' E'') -> IN E' (Inter E).
simple induction E; intros A f r.
intros E' E'' i H.
elim (IN_EXType (sup A f) E'' i).
intros a e; simpl in a.
simpl in e.
cut (IN E' E''); auto with zfc.
intros i'.
cut (IN E' (f a)); auto with zfc.
intros i0.
elim (IN_EXType (f a) E' i0).
intros b e'.
simpl in |- *.
cut (forall x : A, IN (pi2 (f a) b) (f x)).
intros.
exists
(dep_i A
(fun a : A =>
depprod (pi1 (f a))
(fun b : pi1 (f a) => forall x : A, IN (pi2 (f a) b) (f x))) a
(dep_i (pi1 (f a))
(fun b : pi1 (f a) => forall x : A, IN (pi2 (f a) b) (f x)) b H0)).
simpl in |- *.
auto with zfc.
auto with zfc.
intros.
apply IN_sound_left with E'.
auto with zfc.
apply H.
auto with zfc.
simpl in |- *.
exists x; auto with zfc.
apply IN_sound_right with E''; auto with zfc.
Qed.
(* The powerset and its axioms *)
Definition Power (E : Ens) : Ens :=
match E with
| sup A f =>
sup _
(fun P : A -> Prop =>
sup _
(fun c : depprod A (fun a : A => P a) =>
match c with
| dep_i a p => f a
end))
end.
Theorem IN_Power_INC : forall E E' : Ens, IN E' (Power E) -> INC E' E.
simple induction E.
intros A f r; unfold INC in |- *; simpl in |- *.
intros E'; simple induction 1; intros P.
elim E'; simpl in |- *.
intros A' f' r'.
simple induction 1; intros HA HB.
intros E''; simple induction 1; intros a' e.
elim (HA a').
simple induction x; intros a p.
intros; exists a.
auto with zfc.
apply EQ_tran with (f' a'); auto with zfc.
Qed.
Theorem INC_IN_Power : forall E E' : Ens, INC E' E -> IN E' (Power E).
simple induction E; intros A f r; unfold INC in |- *; simpl in |- *.
simple induction E'; intros A' f' r' i.
exists (fun a : A => IN (f a) (sup A' f')).
simpl in |- *.
split.
intros.
elim (i (f' x)); auto with zfc.
intros a e.
cut (EQ (f a) (f' x)); auto with zfc.
intros e1.
exists
(dep_i A (fun a : A => EXType A' (fun y : A' => EQ (f a) (f' y))) a
(EXTypei A' (fun y : A' => EQ (f a) (f' y)) x e1)).
simpl in |- *.
auto with zfc.
auto with zfc.
simpl in |- *.
exists x; auto with zfc.
simple induction y; simpl in |- *.
simple induction 1; intros.
exists x0; auto with zfc.
Qed.
Theorem Power_mon : forall E E' : Ens, INC E E' -> INC (Power E) (Power E').
intros.
unfold INC in |- *; intros.
apply INC_IN_Power.
cut (INC E0 E).
unfold INC in |- *; unfold INC in H; intros; auto with zfc.
apply IN_Power_INC; auto with zfc.
Qed.
Theorem Power_sound : forall E E' : Ens, EQ E E' -> EQ (Power E) (Power E').
intros E E' e.
apply INC_EQ; unfold INC in |- *.
intros A i.
cut (INC A E').
intros; apply INC_IN_Power; assumption.
cut (INC A E); intros.
apply INC_sound_right with E; auto with zfc.
apply IN_Power_INC; assumption.
intros A i.
cut (INC A E).
intros; apply INC_IN_Power; assumption.
cut (INC A E'); intros.
apply INC_sound_right with E'; auto with zfc.
apply IN_Power_INC; assumption.
Qed.
(* small lemma *)
Theorem not_EQ_Sing_Vide : forall E : Ens, EQ (Sing E) Vide -> F.
intros E e; cut False.
simple induction 1.
cut (IN E Vide).
simpl in |- *; simple induction 1; intros xx; elim xx; simple induction 1.
apply IN_sound_right with (Sing E); auto with zfc.
Qed.
Theorem not_EQ_Vide_Sing : forall E : Ens, EQ Vide (Sing E) -> F.
intros E e; cut False.
simple induction 1.
cut (IN E Vide).
simpl in |- *; simple induction 1; intros xx; elim xx; simple induction 1.
apply IN_sound_right with (Sing E); auto with zfc.
Qed.
(* The cartesian product and its properties *)
(* This definition of the ordered pair is slightly different from *)
(* the usual one, since we want it to work in an intuisionistic *)
(* setting. Works the same, neitherless. The soundness proofs are *)
(* unpleasant. *)
Definition Couple (E E' : Ens) := Paire (Sing E) (Paire Vide (Sing E')).
Theorem Couple_inj_left :
forall A A' B B' : Ens, EQ (Couple A A') (Couple B B') -> EQ A B.
unfold Couple in |- *; simpl in |- *.
simple induction 1.
intros HA HB; elim (HA true).
intros x; elim x; simpl in |- *; simple induction 1; intros H3 H4;
elim (H3 true); simpl in |- *; intros xx; elim xx;
simpl in |- *; auto with zfc.
elim (H4 false); simpl in |- *.
simple induction x0; simpl in |- *.
intros.
cut (EQ (Sing B') Vide).
simpl in |- *.
simple induction 1.
intros yy; elim (yy true).
simple induction x1.
apply EQ_tran with A; auto with zfc.
intros; cut (EQ (Sing B') Vide).
simpl in |- *.
simple induction 1.
intros yy; elim (yy true).
simple induction x1.
apply EQ_tran with A; auto with zfc.
intros yy.
elim (HB true); simpl in |- *.
simple induction x0.
change (EQ (Sing A) (Sing B) -> EQ A B) in |- *; intros EE.
apply IN_Sing_EQ.
apply IN_sound_right with (Sing A); auto with zfc.
change (EQ (Paire Vide (Sing A')) (Sing B) -> EQ A B) in |- *.
intros zz.
elimtype F.
apply (not_EQ_Sing_Vide A').
apply EQ_tran with B.
apply IN_Sing_EQ.
apply IN_sound_right with (Paire Vide (Sing A')); auto with zfc.
apply EQ_sym; apply IN_Sing_EQ;
apply IN_sound_right with (Paire Vide (Sing A'));
auto with zfc.
Qed.
Theorem Couple_inj_right :
forall A A' B B' : Ens, EQ (Couple A A') (Couple B B') -> EQ A' B'.
unfold Couple in |- *; simpl in |- *.
simple induction 1; intros H1 H2.
elim (H1 false).
intros bb1; elim bb1.
intros HF.
change (EQ (Paire Vide (Sing A')) (Sing B)) in HF.
cut F.
simple induction 1.
apply (not_EQ_Vide_Sing A').
apply EQ_tran with B.
apply IN_Sing_EQ; apply IN_sound_right with (Paire Vide (Sing A'));
auto with zfc.
apply EQ_sym; apply IN_Sing_EQ;
apply IN_sound_right with (Paire Vide (Sing A'));
auto with zfc.
change (EQ (Paire Vide (Sing A')) (Paire Vide (Sing B')) -> EQ A' B') in |- *.
intros HP; cut (EQ (Sing A') (Sing B')).
intros; auto with zfc.
cut (IN (Sing A') (Paire Vide (Sing B'))).
intros HI; elim (Paire_IN Vide (Sing B') (Sing A') HI).
intros; cut F.
simple induction 1.
apply not_EQ_Sing_Vide with A'; assumption.
trivial with zfc.
apply IN_sound_right with (Paire Vide (Sing A')); auto with zfc.
Qed.
(* Here we cheat. It is easier to define the cartesian product using *)
(* the type theoretical product, i.e. we here use non set-theoretical *)
(* constructions. We could however use the usual definitions. *)
Definition Prod (E E' : Ens) : Ens :=
match E, E' with
| sup A f, sup A' f' =>
sup _
(fun c : prod_t A A' =>
match c with
| pair_t a a' => Couple (f a) (f' a')
end)
end.
Hint Resolve Paire_sound_left Paire_sound_right: zfc.
Theorem Couple_sound_left :
forall A A' B : Ens, EQ A A' -> EQ (Couple A B) (Couple A' B).
unfold Couple in |- *; intros; auto with zfc.
Qed.
Theorem Couple_sound_right :
forall A B B' : Ens, EQ B B' -> EQ (Couple A B) (Couple A B').
unfold Couple in |- *; intros; auto with zfc.
Qed.
Theorem Couple_IN_Prod :
forall E1 E2 E1' E2' : Ens,
IN E1' E1 -> IN E2' E2 -> IN (Couple E1' E2') (Prod E1 E2).
simple induction E1; intros A1 f1 r1; simple induction E2; intros A2 f2 r2.
intros E1' E2' i1 i2.
elim (IN_EXType (sup A1 f1) E1').
intros x e1; simpl in x.
elim (IN_EXType (sup A2 f2) E2').
intros x0 e2; simpl in x.
apply IN_sound_left with (Couple (pi2 (sup A1 f1) x) (pi2 (sup A2 f2) x0));
auto with zfc.
apply EQ_tran with (Couple (pi2 (sup A1 f1) x) E2'); auto with zfc.
apply Couple_sound_right.
auto with zfc.
apply Couple_sound_left; auto with zfc.
simpl in |- *.
simpl in |- *.
exists (pair_t _ _ x x0).
simpl in |- *.
split.
simple induction x1; simpl in |- *.
exists true; simpl in |- *.
split.
simple induction x2; simpl in |- *.
exists true; auto with zfc.
exists true; auto with zfc.
simple induction y; exists true; auto with zfc.
exists false; simpl in |- *.
split.
simple induction x2.
exists true; simpl in |- *; auto with zfc.
split.
simple induction x3.
simple induction y.
exists false; auto with zfc.
simple induction y; simpl in |- *.
exists true; auto with zfc.
exists false; auto with zfc.
simple induction y; simpl in |- *.
exists true; auto with zfc.
exists false; auto with zfc.
auto with zfc.
auto with zfc.
Qed.
Theorem Couple_Prod_IN :
forall E1 E2 E1' E2' : Ens,
IN (Couple E1' E2') (Prod E1 E2) -> IN E1' E1 /\ IN E2' E2.
simple induction E1; intros A1 f1 r1; simple induction E2; intros A2 f2 r2.
intros E1' E2' i.
elim (IN_EXType (Prod (sup A1 f1) (sup A2 f2)) (Couple E1' E2') i).
intros xx; elim xx; intros a1 a2 e.
change (EQ (Couple E1' E2') (Couple (f1 a1) (f2 a2))) in e.
cut (EQ E1' (f1 a1)).
cut (EQ E2' (f2 a2)).
intros e1 e2.
split.
apply IN_sound_left with (f1 a1); auto with zfc; simpl in |- *; exists a1;
auto with zfc.
apply IN_sound_left with (f2 a2); auto with zfc; simpl in |- *; exists a2;
auto with zfc.
apply Couple_inj_right with (A := E1') (B := f1 a1); auto with zfc.
apply Couple_inj_left with E2' (f2 a2); auto with zfc.
Qed.
Theorem IN_Prod_EXType :
forall E E' E'' : Ens,
IN E'' (Prod E E') ->
EXType _ (fun A : Ens => EXType _ (fun B : Ens => EQ (Couple A B) E'')).
simple induction E; intros A f r; simple induction E'; intros A' f' r'.
intros; elim (IN_EXType (Prod (sup A f) (sup A' f')) E'').
simple induction x.
intros; exists (f a); exists (f' b); auto with zfc.
auto with zfc.
Qed.
(* Ordinals *)
Definition Succ (E : Ens) := Union (Paire E (Sing E)).
Inductive Ord : Ens -> Prop :=
| Oo : Ord Vide
| So : forall E : Ens, Ord E -> Ord (Succ E)
| Lo : forall E : Ens, (forall e : Ens, IN e E -> Ord e) -> Ord (Union E)
| Eo : forall E E' : Ens, Ord E -> EQ E E' -> Ord E'.
Hint Resolve Oo So Lo: zfc.
Definition Nat : nat -> Ens.
simple induction 1; intros.
exact Vide.
exact (Succ X).
Defined.
Theorem Nat_Ord : forall n : nat, Ord (Nat n).
simple induction n; simpl in |- *; auto with zfc.
Qed.
Definition Omega : Ens := sup nat Nat.
Theorem IN_Succ : forall E : Ens, IN E (Succ E).
intros E; unfold Succ in |- *; unfold Sing in |- *;
apply IN_Union with (Paire E E); auto with zfc.
Qed.
Theorem INC_Succ : forall E : Ens, INC E (Succ E).
unfold INC in |- *; unfold Succ in |- *.
intros.
apply IN_Union with E; auto with zfc.
Qed.
Hint Resolve IN_Succ INC_Succ: zfc.
Theorem IN_Succ_or : forall E E' : Ens, IN E' (Succ E) -> EQ E E' \/ IN E' E.
intros E E' i.
unfold Succ in i.
elim (Union_IN (Paire E (Sing E)) E' i).
intros E1; simple induction 1; intros i1 i2.
elim (Paire_IN E (Sing E) E1 i1).
intros; right; apply IN_sound_right with E1; auto with zfc.
intros; left; cut (IN E' (Sing E)).
auto with zfc.
apply IN_sound_right with E1; auto with zfc.
Qed.
Theorem E_not_IN_E : forall E : Ens, IN E E -> F.
simple induction E; intros A f r i.
cut False.
simple induction 1.
elim (IN_EXType (sup A f) (sup A f) i); intros a e.
simpl in a.
change (EQ (sup A f) (f a)) in e.
elim (r a).
apply IN_sound_right with (sup A f); auto with zfc.
exists a; auto with zfc.
Qed.
Theorem Nat_IN_Omega : forall n : nat, IN (Nat n) Omega.
intros; simpl in |- *; exists n; auto with zfc.
Qed.
Hint Resolve Nat_IN_Omega: zfc.
Theorem IN_Omega_EXType :
forall E : Ens, IN E Omega -> EXType _ (fun n : nat => EQ (Nat n) E).
simpl in |- *; simple induction 1.
intros n e.
exists n; auto with zfc.
Qed.
Theorem IN_Nat_EXType :
forall (n : nat) (E : Ens),
IN E (Nat n) -> EXType _ (fun p : nat => EQ E (Nat p)).
simple induction n.
simpl in |- *.
simple induction 1.
simple induction x.
intros.
change (IN E (Succ (Nat n0))) in H0.
elim (IN_Succ_or (Nat n0) E H0).
intros; exists n0.
auto with zfc.
intros.
elim (H E); auto with zfc.
Qed.
Theorem Omega_EQ_Union : EQ Omega (Union Omega).
apply INC_EQ; unfold INC in |- *.
intros.
elim (IN_Omega_EXType E H); intros n e.