-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodeling_rates_stan.R
143 lines (92 loc) · 3.77 KB
/
modeling_rates_stan.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
##
#modeling rates, but with Stan and not one by one
library (ggplot2)
library(rstan)
library(tidybayes)
#get processed data
data_doc<- read.csv("./data_doc.csv")
site_info<-read.csv("./site_data.csv")
source("./doc_functions.R")
data_doc$trial<- as.integer(factor(data_doc$code, levels = c("b_g1_up","b_g1_down","b_g2_up","b_g2_down","b_l_up","b_l_down")))
KQ_out<- function(data, site_data){
Q<-site_data$salt_mass*2100/nutint(data$MinFrom0, data$SpC_corr, bkg=0)
int13c<- nutint(data$MinFrom0, data$doc_13C, bkg=0 )
int13c_flux<-int13c*Q
K<- -(log(int13c_flux) -log(site_data$doc_mass_13C_mg))/site_data$length
velocity<- site_data$length/site_data$travel_time
z<-0.001*Q/(site_data$width*velocity)
c(K, Q, velocity, z)
}
KQ<-data.frame(K=NA, q=NA, velocity=NA, z=NA)
for ( i in 1:6){
dat<- data_doc[data_doc$trial==i, ]
KQ[i,]<- KQ_out(data=dat, site_data=site_info[i,] )
}
code<-c("b_g1_up","b_g1_down","b_g2_up","b_g2_down","b_l_up","b_l_down")
KQ$code <-code
KQ$vf<-( KQ$q*0.001*1440/site_info$width[1:6])* KQ$K
##save lots of stan coding by --calculating--R_g outside of it
R_g_out<- function(data,Q){
removed_c_flux = data$removed_c*Q
r_g<-0
for (i in 2: length (data$MinFrom0) ){
int_u<- (data$MinFrom0[i]-data$MinFrom0[i-1])*(removed_c_flux[i])
r_g[i]<- r_g[i-1]+int_u
}
r_g
}
R_g<-NA
for ( i in 1:6){
dat<- data_doc[data_doc$trial==i, ]
R_g_one<- R_g_out(data=dat, Q=KQ$q[i])
R_g<-c(R_g,R_g_one)
}
R_g<-R_g[-1]
data_doc$R_g<-R_g
data_doc <- left_join(data_doc,KQ, by="code")
##data for stan model
dic_dat<- list(N=length(data_doc$trial), N_groups=6, DIC_flux = data_doc$DIC13 * data_doc$q, R_g=data_doc$R_g,
MinFrom0 = data_doc$MinFrom0, group_id = data_doc$trial, removed_c = data_doc$removed_c, q = data_doc$q)
dic_fit<-stan(file= "dic_prod.stan", data=dic_dat, iter = 2000, chains = 4)
##extract params and samples to make a figure
doc_steps<- dic_fit %>%
spread_draws(kc[i], fi[i])
med_doc_steps<- median_qi(doc_steps)
head(doc_steps)
pred_steps<- dic_fit %>%
spread_draws(pred_imm[i], pred_delayed[i], ndraws=200)
pred_steps$group<- rep(data_doc$trial, each=200)
pred_steps$MinFrom0<- rep(data_doc$MinFrom0, each=200)
pred_steps$MinFrom0<- rep(data_doc$MinFrom0, each=200)
pred_steps$step<-rep(1:217, 200)
pred_steps$pred_tot <- pred_steps$pred_imm + pred_steps$pred_delayed
pred_steps <-pred_steps %>% arrange(step, i)
head(pred_steps)
###extract
####
#####
#Some figures, final drafts are in plots file, delete these at some point
library(wesanderson)
ggplot( doc_steps, aes(x=kc, y=fi, color = as.factor(i))) +
geom_point(alpha=0.5, size =0.1) + ylim(0,0.8) +xlim(0,8)+
theme_classic()+
scale_colour_manual(values=c("#EBCC2A","#F2AD00","#D69C4E", "#F98400", "#ABDDDE","#5BBCD6"),name="", breaks=c(1,2,3,4,5,6),
labels=c("g_1_up", "g_1_down", "g_2_up", "g_2_down", "l_up", "l_down"))+
guides(colour = guide_legend(override.aes = list(size=3)))+
labs(x = expression(paste(italic(k[c])," (1/d)")), y = expression(italic(f[i])))
##1/kc
ggplot( doc_steps) +
geom_point( aes(x=1/kc, y=fi, color = as.factor(i)),alpha=0.1, size =0.1) + ylim(0,0.8) +xlim(0,1)+
theme_classic()+
scale_colour_manual(values=c("#EBCC2A","#F2AD00","#D69C4E", "#F98400", "#ABDDDE","#5BBCD6"),name="", breaks=c(1,2,3,4,5,6),
labels=c("g_1_up", "g_1_down", "g_2_up", "g_2_down", "l_up", "l_down"))+
guides(colour = guide_legend(override.aes = list(size=3)))+
labs(x = expression(paste(italic(1/k[c])," (d)")), y = expression(italic(f[i])))+
geom_point(data=med_doc_steps, aes(x=1/kc, y=fi))
##Uptake length and Vf summaries fo paper
KQ$sw<- 1/ KQ$K
KQ$vf<- KQ$K * KQ$z *KQ$velocity *1440 # units m/d
mean(KQ$sw[1:4])
mean(KQ$sw[5:6])
mean(KQ$vf[1:4])
mean(KQ$vf[5:6])