-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathmultithreaded_optimization.jl
105 lines (86 loc) · 4.55 KB
/
multithreaded_optimization.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
using Pkg
Pkg.activate(".")
if Threads.nthreads() < 2
error("Multiple threads NOT found! Makes no sense to test this without them... Start as, for example: JULIA_NUM_THREADS=4 julia multithreaded_optimization.jl")
exit(-1)
end
using BlackBoxOptim
# Functions to optimize. Should be thread-safe.
function rosenbrock(x)
sleep(0.05) # So that there is some benefit in the thread switching...
sum(i -> 100*abs2(x[i+1] - x[i]^2) + abs2(x[i] - 1), Base.OneTo(length(x)-1))
end
function rastrigin(x)
D = length(x)
10 * D + sum(abs2, x) - 10 * sum(xx -> cos(2π * xx), x)
end
# For multi-objective opt:
optfun(x) = (rosenbrock(x), rastrigin(x))
# Let's ensure they are really thread-safe:
for (fn, N) in [(rosenbrock, 100), (rastrigin, 1000000)]
points = rand(N, 2)
@time single_threaded = map(i -> fn(points[i, :]), 1:N)
multi_threaded = zeros(Float64, N)
@time Threads.@threads for i in 1:N
multi_threaded[i] = fn(points[i, :])
end
@assert sum((single_threaded .- multi_threaded).^2) == 0
end
# Short runs to ensure things have compiled:
bboptimize(rosenbrock; SearchRange = (-5.0, 5.0), NumDimensions = 2,
MaxTime = 0.1, TraceMode = :silent, Method = :dxnes, lambda = 10);
bboptimize(rosenbrock; SearchRange = (-5.0, 5.0), NumDimensions = 2,
MaxTime = 0.1, TraceMode = :silent, NThreads=Threads.nthreads()-1, Method = :dxnes, lambda = 10);
bboptimize(optfun; SearchRange = (-5.0, 5.0), NumDimensions = 2,
MaxTime = 0.5, TraceMode = :silent, NThreads=Threads.nthreads()-1,
Method = :borg_moea, ϵ=0.05,
FitnessScheme=ParetoFitnessScheme{2}(is_minimizing=true));
# Same time given to single- and multi-threaded optimization runs:
MaxTime = 30.0
# Now run the single-threaded optimization:
@time res_single = bboptimize(rosenbrock; SearchRange = (-5.0, 5.0), NumDimensions = 100,
MaxTime = MaxTime, TraceMode = :silent, Method = :dxnes, lambda = 50)
# Now run the multi-threaded optimization:
@time res_multi = bboptimize(rosenbrock; SearchRange = (-5.0, 5.0), NumDimensions = 100,
MaxTime = MaxTime, TraceMode = :silent, NThreads=Threads.nthreads()-1,
Method = :dxnes, lambda = 50)
println("Fitness (single-threaded): ", round(best_fitness(res_single), digits=4))
println("Fitness (multi-threaded): ", round(best_fitness(res_multi), digits=4))
#@assert BlackBoxOptim.f_calls(res_single) < BlackBoxOptim.f_calls(res_multi)
@time res_single = bboptimize(optfun; SearchRange = (-5.0, 5.0), NumDimensions = 100,
MaxTime = MaxTime, TraceMode = :silent,
Method = :borg_moea, ϵ=0.05,
FitnessScheme=ParetoFitnessScheme{2}(is_minimizing=true));
@time res_multi = bboptimize(optfun; SearchRange = (-5.0, 5.0), NumDimensions = 100,
MaxTime = MaxTime, TraceMode = :silent, NThreads=Threads.nthreads()-1,
Method = :borg_moea, ϵ=0.05,
FitnessScheme=ParetoFitnessScheme{2}(is_minimizing=true));
# The whole idea with multi-threading is that we can evaluate more function calls in same time so:
@assert BlackBoxOptim.f_calls(res_single) < BlackBoxOptim.f_calls(res_multi)
# Now do repeated runs and compare if there is a real difference in fitness
using HypothesisTests
using Statistics
for method in [:adaptive_de_rand_1_bin_radiuslimited, :dxnes]
fsingle, fmulti = Float64[], Float64[]
for i in 1:10
println("Single-threaded run $i")
res_single = bboptimize(rosenbrock; SearchRange = (-5.0, 5.0), NumDimensions = 100,
Method = method, MaxTime = MaxTime, TraceMode = :silent, lambda = 50)
push!(fsingle, best_fitness(res_single))
println("Fitness (single-threaded): ", round(last(fsingle), digits=2))
println("Multi-threaded run $i")
res_multi = bboptimize(rosenbrock; SearchRange = (-5.0, 5.0), NumDimensions = 100,
Method = method, MaxTime = MaxTime, TraceMode = :silent, lambda = 50,
NThreads=Threads.nthreads()-1)
push!(fmulti, best_fitness(res_multi))
println("Fitness (multi-threaded): ", round(last(fmulti), digits=2))
end
pval = pvalue(MannWhitneyUTest(fsingle, fmulti))
# Seems to give consistently better fitness in single-threaded runs on my 4-core
# (as well as 2-core (but more expected there)) laptops for adaptive_de_rand_1_bin_radiuslimited.
# Tried for MaxTime 5, 10, and 60 seconds with same results...
println("For method: ", method)
println("Mean Fitness (single-threaded): ", round(mean(fsingle), digits=2))
println("Mean Fitness (multi-threaded): ", round(mean(fmulti), digits=2))
println("Significant difference: ", (pval < 0.01 ? "Yes" : "No"), " ($(round(pval, digits=5)))")
end