-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_training_set.py
181 lines (145 loc) · 6.12 KB
/
generate_training_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# A module to synthesize labels and images into a training set
import datetime
import glob
import os
import sys
import tarfile
import h5py
from PIL import Image
import numpy as np
import pandas as pd
from utils import format_batchnum
# Collect all labels (metadata already in master_labels)
master_labels = pd.read_csv('Results/master_results.csv')
master_labels['OBJID'] = np.array(master_labels['OBJID'].values, dtype=int)
master_labels['OBJID_COPY'] = master_labels['OBJID'].values
master_labels.set_index("OBJID", inplace=True)
my_labels = pd.read_csv('Results/ramorgan2/my_labels.csv')
my_labels['OBJID'] = np.array(my_labels['OBJID'].values, dtype=int)
my_labels['OBJID_COPY'] = my_labels['OBJID'].values
my_labels.set_index("OBJID", inplace=True)
unsure_labels = pd.concat([pd.read_csv(x) for x in glob.glob('Results/UnsureResults/*.csv')])
unsure_labels['OBJID'] = np.array(unsure_labels['OBJID'].values, dtype=int)
unsure_labels['OBJID_COPY'] = unsure_labels['OBJID'].values
unsure_labels.set_index("OBJID", inplace=True)
### Drop all duplicates
### Overwrite unsure and overlapping labels
my_labels['ACTION'] = my_labels['LABEL'].values
my_labels['USER'] = "ramorgan2"
master_labels.update(my_labels)
unsure_labels['USER'] = "ramorgan2"
master_labels.update(unsure_labels)
del unsure_labels, my_labels
### drop unnecessary columns
master_labels.drop(['Unnamed: 0', 'METADATA_STAMP'], axis=1, inplace=True)
### Overwrites from secondary inspection
inspect_df = pd.read_csv('overwrite.csv', comment='#')
inspect_df = inspect_df.drop_duplicates('OBJID', keep='last')
inspect_df.set_index("OBJID", inplace=True)
master_labels.update(inspect_df)
del inspect_df
### Collect all batch numbers
batch_objid_map = pd.read_csv('batch_objid_map.csv')
batch_objid_map.drop_duplicates(inplace=True)
batch_objid_map.set_index('OBJID', inplace=True)
master_labels = master_labels.join(batch_objid_map, on='OBJID', how='inner')
# Prepare data storage objects
class_map = {'Good': 0,
'Marginal': 1,
'Other': 2,
'BadSubtraction': 3,
'DarkSpotInTemplateCenter': 4,
'NoisyTemplate': 5,
'PsfInTemplate': 6,
'GoodCNN': 7,
'BadSubtractionCNN': 8}
class DataObject():
def __init__(self):
self.objid_list = []
self.images = []
self.metadata_list = []
return
data = {v: DataObject() for v in class_map.values()}
counter = 0.0
total = len(set(master_labels['BATCH'].values))
# Collect all images
batch_labels = master_labels.groupby("BATCH")
for batch, labels in batch_labels:
# Output progress
counter += 1.0
progress = counter / total * 100
sys.stdout.write("\rProgress: %.2f %%" %progress)
sys.stdout.flush()
# Read tarball
batch_filename = glob.glob('ImageBank/Batches/batch--' + format_batchnum(batch) + '*.gz')[0]
t = tarfile.open(batch_filename, 'r:gz')
# Determine OBJIDs of interest
batch_objids = [int(x.split('/')[-1][4:-4]) for x in t.getnames() if x.find('srch') != -1]
valid_objids = list(set(batch_objids).intersection(set(labels.index)))
# Sort data
for objid in valid_objids:
# Grab metadata
metadata_df = master_labels.loc[objid]
# Make sure we get one metadata entry per objid
if isinstance(metadata_df, pd.Series):
metadata_df = pd.DataFrame(data=[metadata_df.values], columns=metadata_df.index.values)
else:
metadata_df = pd.DataFrame(data=[metadata_df.iloc[0].values], columns=metadata_df.iloc[0].index.values)
if metadata_df.shape[0] != 1:
continue
# Skip any lingering UNSURE images
try:
if labels.loc[objid]['ACTION'] not in class_map.keys():
continue
else:
action = labels.loc[objid]['ACTION']
except TypeError:
action = ''
for act in labels.loc[objid]['ACTION'].values:
if act in class_map.keys():
action = act
break
if action == '': continue
# Isolate images
prefix = batch_filename.split('/')[-1][:-7] + '/'
srch = np.array(Image.open(t.extractfile(prefix + "srch" + str(objid) + ".gif")))
temp = np.array(Image.open(t.extractfile(prefix + "temp" + str(objid) + ".gif")))
diff = np.array(Image.open(t.extractfile(prefix + "diff" + str(objid) + ".gif")))
# Organize using the data storage objects
#data[class_map[labels.loc[objid]['ACTION']]].objid_list.append(objid)
#data[class_map[labels.loc[objid]['ACTION']]].images.append(np.array([srch, temp, diff]))
#data[class_map[labels.loc[objid]['ACTION']]].metadata_list.append(metadata_df)
data[class_map[action]].objid_list.append(objid)
data[class_map[action]].images.append(np.array([srch, temp, diff]))
data[class_map[action]].metadata_list.append(metadata_df)
t.close()
# Checks
for v in data.values():
assert len(v.metadata_list) == len(v.objid_list)
assert len(v.images) == len(v.objid_list)
# Now attach the metadata
for v in data.values():
if len(v.metadata_list) == 0:
continue
v.metadata = pd.concat(v.metadata_list)
# Create a directory for the training set
training_set_name = "TS__" + datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
os.mkdir("TrainingSets/" + training_set_name)
# Save data
for k, v in data.items():
if len(v.metadata_list) == 0:
continue
# Save metadata
v.metadata.to_csv("TrainingSets/" + training_set_name + '/Class_' + str(k) + '_metadata.csv', index=False)
# Save OBJIDs
listfile = open("TrainingSets/" + training_set_name + '/Class_' + str(k) + '_objids.txt', 'w+')
listfile.writelines([str(x) + '\n' for x in v.objid_list])
listfile.close()
# Save images
hf = h5py.File("TrainingSets/" + training_set_name + '/Class_' + str(k) + '_images.h5', 'w')
hf.create_dataset("Class_" + str(k), data=np.array(v.images))
hf.close()
# Compress the training set
os.chdir('TrainingSets')
os.system('tar -czf ' + training_set_name + '.tar.gz ' + training_set_name)
os.system('rm -rf ' + training_set_name)