-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
313 lines (263 loc) · 14 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import tensorflow as tf
import numpy as np
import codecs
import regex
import json
class TranslationData(object):
"""
Translation DataSet, sentence pairs between DE and EN.
Data is from https://github.com/greentfrapp/attention-primer/tree/master/5_translation/data
"""
def __init__(self):
self.en_file = "data/translation/train.tags.de-en.en"
self.de_file = "data/translation/train.tags.de-en.de"
self.en_samples = self._get_lines(self.en_file)
self.de_samples = self._get_lines(self.de_file)
self.n_samples = len(self.en_samples)
self.en_dict = json.load(open("data/translation/en_dict.json", 'r', encoding='utf-8'))
self.de_dict = json.load(open("data/translation/de_dict.json", 'r', encoding='utf-8'))
self.en_vocab_size = len(self.en_dict)
self.de_vocab_size = len(self.de_dict)
def _get_lines(self, file):
text = codecs.open(file, 'r', 'utf-8').read().lower()
text = regex.sub("<.*>.*</.*>\r\n", "", text)
text = regex.sub("[^\n\s\p{Latin}']", "", text)
samples = text.split('\n')
return samples
def sparse_coding(self, sentence, dictionary, max_len=20, sos=False, eos=False):
words = sentence.split()[:max_len]
while len(words) < max_len:
words.append('<PAD>')
if sos:
tokens = ['<START>']
else:
tokens = []
tokens.extend(words)
if eos:
tokens.append('<PAD>')
tokens = tokens[:20]
idxs = []
for token in tokens:
try:
idxs.append(dictionary.index(token))
except:
idxs.append(dictionary.index('<UNK>'))
idxs = np.array(idxs)
return idxs
def prettify(self, logits, dictionary):
idxs = np.argmax(logits, axis=1)
return " ".join(np.array(dictionary)[idxs])
def generate(self, max_len=20):
idx = -1
while True:
idx = (idx + 1) % self.n_samples
de = self.sparse_coding(self.de_samples[idx], self.de_dict, max_len=max_len, sos=False, eos=False)
en_in = self.sparse_coding(self.en_samples[idx], self.en_dict, max_len=max_len, sos=True, eos=False)
en_out = self.sparse_coding(self.en_samples[idx], self.en_dict, max_len=max_len, sos=False, eos=True)
yield (de, en_in), en_out
def get_generator(self, max_len):
def generator():
return self.generate(max_len=max_len)
return generator
##################################################################################################################################
class RmPosition(tf.keras.layers.Layer):
"""
Position encoding via adding the trainable weights.
"""
def __init__(self, seq, hidden, **kwargs):
super(RmPosition, self).__init__(**kwargs)
self.position_weight = self.add_weight(shape=(1, seq, hidden), initializer='uniform', trainable=True, name='w_p')
def get_config(self):
"""
Required by Model Saving.
"""
config = super().get_config()
config.update({
"seq": self.position_weight.shape[1],
"hidden": self.position_weight.shape[2],
})
return config
def call(self, inputs):
return tf.add(inputs, self.position_weight)
##################################################################################################################################
class RmMultiHeadAttention(tf.keras.layers.Layer):
"""
Multi-head attention.
"""
def __init__(self, head, hidden, sequence_mask=False, **kwargs):
super(RmMultiHeadAttention, self).__init__(**kwargs)
self.head = head
self.hidden = hidden
self.sequence_mask = sequence_mask
self.chunk_size = int(hidden / head)
# Weights for inputs.
# stddev is bigger => weights are more random => then initial diff are more small => then init attention-weights are more close
# It's possible we can have two different hidden, one is input, another is output.
self.w_q = self.add_weight(shape=(hidden, hidden), initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=1e-2), trainable=True, name='w_q')
self.w_k = self.add_weight(shape=(hidden, hidden), initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=1e-2), trainable=True, name='w_k')
self.w_v = self.add_weight(shape=(hidden, hidden), initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=1e-2), trainable=True, name='w_v')
def get_config(self):
"""
Required by Model Saving.
"""
config = super().get_config()
config.update({
"head": self.head,
"hidden": self.hidden,
"sequence_mask": self.sequence_mask,
})
return config
def call(self, inputs):
q = inputs[0]
k = inputs[1]
v = inputs[2]
emb_q = tf.matmul(q, self.w_q)
emb_k = tf.matmul(k, self.w_k)
emb_v = tf.matmul(v, self.w_v)
multi_q = tf.stack(tf.split(emb_q, num_or_size_splits=self.head, axis=-1), axis=0)
multi_k = tf.stack(tf.split(emb_k, num_or_size_splits=self.head, axis=-1), axis=0)
multi_v = tf.stack(tf.split(emb_v, num_or_size_splits=self.head, axis=-1), axis=0)
# Scale based on one head's shape, not all heads
scale = tf.cast(multi_q.shape[-1] ** 0.5, tf.float32)
dot_match = tf.matmul(multi_q, multi_k, transpose_b=True) / scale
attention_weights = tf.nn.softmax(dot_match)
# Sequence Mask (don't let model know future sequence)
# https://ifwind.github.io/2021/08/17/Transformer%E7%9B%B8%E5%85%B3%E2%80%94%E2%80%94%EF%BC%887%EF%BC%89Mask%E6%9C%BA%E5%88%B6/
if self.sequence_mask:
attention_weights = tf.linalg.band_part(attention_weights, -1, 0)
attention_weights = tf.math.divide(attention_weights, tf.reduce_sum(attention_weights, axis=3, keepdims=True))
# Convert from multiple style back to single style
weighted_v = tf.matmul(attention_weights, multi_v)
weighted_v = tf.split(weighted_v, num_or_size_splits=self.head, axis=0)
weighted_v = tf.concat(weighted_v, axis=-1)
weighted_v = tf.squeeze(weighted_v, axis=0)
return weighted_v
##################################################################################################################################
def get_model(max_len=20, hidden=64, head=4, en_vocab_size=1004, de_vocab_size=14966):
"""
Get the model
"""
# Encode (max_len)
# Input based on sparse index and then an embedding layer, it's much faster than one-hot.
encodeInput = tf.keras.Input(shape=(max_len), name='encode_input')
encodeEmb = tf.keras.layers.Embedding(input_dim=de_vocab_size, output_dim=hidden, name='encode_input_embedding')(encodeInput)
encodeEmb = RmPosition(max_len, hidden, name='encode_input_positioning')(encodeEmb)
#===== Transformer Encode Block Starts =====
# Encode Attention Add Norm
weighted_v = RmMultiHeadAttention(head=head, hidden=hidden, name='encode_attention')((encodeEmb, encodeEmb, encodeEmb))
encodeEmb = tf.keras.layers.Add(name='encode_attention_add')([encodeEmb, weighted_v])
encodeEmb = tf.keras.layers.LayerNormalization(axis=-1, name='encode_attention_norm')(encodeEmb)
# Encode FeedForward Add Norm
encodeIncreased = tf.keras.layers.Dense(units=hidden*2, activation='relu', name='encode_ff_increse')(encodeEmb)
encodeDecreased = tf.keras.layers.Dense(units=hidden, activation=None, name='encode_ff_decrease')(encodeIncreased)
encodeEmb = tf.keras.layers.Add(name='encode_ff_add')([encodeEmb, encodeDecreased])
encodeEmb = tf.keras.layers.LayerNormalization(axis=-1, name='encode_ff_norm')(encodeEmb)
#===== Transformer Encode Block Ends =====
# Decode (max_len, vocab_size), input has one more '<START>', use Mask;
decodeInput = tf.keras.Input(shape=(max_len), name='decode_input')
decodeEmb = tf.keras.layers.Embedding(input_dim=en_vocab_size, output_dim=hidden, name='decode_input_embedding')(decodeInput)
decodeEmb = RmPosition(max_len, hidden, name='decode_input_positioning')(decodeEmb)
#===== Transformer Decode Block Starts =====
# Decode Attention Add Norm
weighted_v = RmMultiHeadAttention(head=head, hidden=hidden, sequence_mask=True, name='decode_attention')((decodeEmb, decodeEmb, decodeEmb))
decodeEmb = tf.keras.layers.Add(name='decode_attention_add')([decodeEmb, weighted_v])
decodeEmb = tf.keras.layers.LayerNormalization(axis=-1, name='decode_attention_norm')(decodeEmb)
# Decode-Encode Attention Add Norm
weighted_v = RmMultiHeadAttention(head=head, hidden=hidden, name='decode_encode_attention')((decodeEmb, encodeEmb, encodeEmb))
decodeEmb = tf.keras.layers.Add(name='decode_encode_attention_add')([decodeEmb, weighted_v])
decodeEmb = tf.keras.layers.LayerNormalization(axis=-1, name='decode_encode_attention_norm')(decodeEmb)
# Decode FeedForward Add Norm
decodeIncreased = tf.keras.layers.Dense(units=hidden*2, activation='relu', name='decode_ff_increse')(decodeEmb)
decodeDecreased = tf.keras.layers.Dense(units=hidden, activation=None, name='decode_ff_decrease')(decodeIncreased)
decodeEmb = tf.keras.layers.Add(name='decode_ff_add')([decodeEmb, decodeDecreased])
decodeEmb = tf.keras.layers.LayerNormalization(axis=-1, name='decode_ff_norm')(decodeEmb)
#===== Transformer Decode Block Ends =====
# Output (logits, not softmax, loss-fn side will take care it.)
output = tf.keras.layers.Dense(en_vocab_size, activation=None, name='output')(decodeEmb)
model = tf.keras.Model(inputs=[encodeInput, decodeInput], outputs=output, name='model')
return model
def plot_model(model):
"""
Plot the model
"""
from PIL import Image
file_name = 'model.png'
tf.keras.utils.plot_model(model, to_file=file_name, show_shapes=True, show_layer_activations=True)
image = Image.open(file_name)
image.show()
##################################################################################################################################
import os
import datetime
def train(max_len=20, hidden=64, head=4, batchsize=64, epochs=1, steps_per_epoch=None, tensorboard=False, tb_dir='logs', model_dir='saved_model/transformer'):
"""
Train the model
"""
translation_data = TranslationData()
dataset = tf.data.Dataset.from_generator(
translation_data.get_generator(max_len),
output_signature=(((tf.TensorSpec(shape=(max_len), dtype=tf.int64), tf.TensorSpec(shape=(max_len), dtype=tf.int64)),
tf.TensorSpec(shape=(max_len), dtype=tf.int64))))
dataset = dataset.prefetch(buffer_size=batchsize*1000).shuffle(buffer_size=batchsize*100).batch(batchsize)
model = get_model(max_len=max_len, hidden=hidden, head=head,
en_vocab_size=translation_data.en_vocab_size, de_vocab_size=translation_data.de_vocab_size)
if tensorboard:
tb_dir = os.path.join(tb_dir, datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(
loss=loss_fn,
optimizer=tf.keras.optimizers.legacy.Adam(learning_rate=1e-3),
metrics=["sparse_categorical_accuracy"],
)
print(f'Trainable params: {len(model.trainable_weights)}')
print(f'Launch TensorBoard to check the logs:\n tensorboard --logdir {tb_dir}')
callbacks = []
if tensorboard:
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=tb_dir, histogram_freq=1)
callbacks.append(tensorboard_callback)
steps_per_epoch = steps_per_epoch if steps_per_epoch is not None else translation_data.n_samples // batchsize
_ = model.fit(dataset, steps_per_epoch=steps_per_epoch, epochs=epochs, callbacks=callbacks)
model.save(model_dir)
def predict(input_string, max_len=20, model_dir='saved_model/transformer'):
model=tf.keras.models.load_model(model_dir)
translation_data = TranslationData()
input_de = np.array([translation_data.sparse_coding(input_string, translation_data.de_dict, max_len=max_len)])
output = ""
for i in range(max_len):
last_output = np.array([translation_data.sparse_coding(output, translation_data.en_dict, max_len=max_len, sos=True)])
predicted = model.predict((input_de, last_output), verbose = 2)
predicted_str = translation_data.prettify(predicted[0], translation_data.en_dict)
predicted_token = predicted_str.split()[i]
if predicted_token == '<PAD>':
break
joiner_char = ' ' if len(output) > 0 else ''
output = output + joiner_char + predicted_str.split()[i]
print(f'DE: {input_string}\nEN: {output}')
##################################################################################################################################
from absl import flags
from absl import app
FLAGS = flags.FLAGS
flags.DEFINE_bool("plot", False, "Plot the model based on model codes")
flags.DEFINE_bool("smoke", False, "Try train a little bit to do smoking test")
flags.DEFINE_bool("train", False, "Train the model and save")
flags.DEFINE_bool("predict", False, "Load saved model and predict")
flags.DEFINE_string("input", "es ist gut", "Used with --predict, German input, to be translated to English")
flags.DEFINE_string("tb_dir", "/tmp/logs", "TensorbBoard log folder")
def main(unused_args):
"""
Samples:
python transformer.py --plot
python transformer.py --smoke --tb_dir "logs"
python transformer.py --train --tb_dir "logs"
python transformer.py --predict --input "es ist gut"
"""
if FLAGS.plot:
model = get_model()
plot_model(model)
if FLAGS.smoke:
train(steps_per_epoch=10, epochs=2, tensorboard=True, tb_dir=FLAGS.tb_dir)
if FLAGS.train:
train(steps_per_epoch=None, epochs=4, tensorboard=True, tb_dir=FLAGS.tb_dir)
if FLAGS.predict:
predict(FLAGS.input)
if __name__ == '__main__':
app.run(main)