-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathoptim.py
209 lines (188 loc) · 5.84 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import ckconv
import math
# typing
from omegaconf import OmegaConf
DATASET_SIZES = {
"SpeechCommands": 24482,
"MNIST": 60000,
"sMNIST": 60000,
"CIFAR10": 50000,
"sCIFAR10": 50000,
"CIFAR100": 50000,
"STL10": 5000,
"Cityscapes": 2975,
"VOC": 1464,
"Imagenet": 1281167,
"Imagenet64": 1281167,
"Imagenet32": 1281167,
"Imagenet16": 1281167,
"Imagenet8": 1281167,
}
CLASSES_DATASET = {
"Imagenet": 1000,
"Imagenet64": 1000,
"Imagenet32": 1000,
"Imagenet16": 1000,
"Imagenet8": 1000,
"CIFAR100": 10,
"Cityscapes": 19,
"VOC": 21,
}
def construct_optimizer(
model: torch.nn.Module,
cfg: OmegaConf,
):
"""
Constructs an optimizer for a given model
:param model: a list of parameters to be trained
:param cfg:
:return: optimizer
"""
# Unpack values from cfg.train
optimizer_type = cfg.train.optimizer
lr = cfg.train.lr
omega_0_lr_factor = cfg.train.omega_0_lr_factor
mask_params_lr_factor = cfg.train.mask_params_lr_factor
# Unpack values from cfg.train.optimizer_params
momentum = cfg.train.optimizer_params.momentum
nesterov = cfg.train.optimizer_params.nesterov
# Divide params in omega_0s and other
all_parameters = set(model.parameters())
# omega_0s
omega_0s = []
for m in model.modules():
if isinstance(
m,
(
ckconv.nn.MultipliedLinear1d,
ckconv.nn.MultipliedLinear2d,
ckconv.nn.ck.SIRENlayer1d,
ckconv.nn.ck.SIRENlayer2d,
),
):
omega_0s += list(
map(
lambda x: x[1],
list(filter(lambda kv: "omega_0" in kv[0], m.named_parameters())),
)
)
omega_0s = set(omega_0s)
other_params = all_parameters - omega_0s
# mask_params
mask_params = []
for m in model.modules():
if isinstance(m, ckconv.nn.FlexConv):
mask_params += list(
map(
lambda x: x[1],
list(
filter(lambda kv: "mask_params" in kv[0], m.named_parameters())
),
)
)
mask_params = set(mask_params)
other_params = other_params - mask_params
# as list
omega_0s = list(omega_0s)
mask_params = list(mask_params)
other_params = list(other_params)
if optimizer_type == "SGD":
optimizer = torch.optim.SGD(
[
{"params": other_params},
{"params": omega_0s, "lr": omega_0_lr_factor * lr},
{"params": mask_params, "lr": mask_params_lr_factor * lr},
],
lr=lr,
momentum=momentum,
nesterov=nesterov,
)
elif optimizer_type == "Adam":
optimizer = torch.optim.Adam(
[
{"params": other_params},
{"params": omega_0s, "lr": omega_0_lr_factor * lr},
{"params": mask_params, "lr": mask_params_lr_factor * lr},
],
lr=lr,
)
elif optimizer_type == "RMSprop":
optimizer = torch.optim.RMSprop(
model.parameters(),
lr=lr,
# weight_decay=config.weight_decay,
)
else:
raise ValueError(
f"Unexpected value for type of optimizer (cfg.train.optimizer): {optimizer_type}"
)
return optimizer
def construct_scheduler(
optimizer,
cfg: OmegaConf,
):
"""
Creates a learning rate scheduler for a given model
:param optimizer: the optimizer to be used
:return: scheduler
"""
# Unpack values from cfg.train.scheduler_params
scheduler_type = cfg.train.scheduler
decay_factor = cfg.train.scheduler_params.decay_factor
decay_steps = cfg.train.scheduler_params.decay_steps
patience = cfg.train.scheduler_params.patience
warmup_epochs = cfg.train.scheduler_params.warmup_epochs
warmup = warmup_epochs != -1
if scheduler_type == "multistep":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=decay_steps,
gamma=1.0 / decay_factor,
)
elif scheduler_type == "plateau":
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="max",
factor=1.0 / decay_factor,
patience=patience,
verbose=True,
# threshold_mode="rel",
# min_lr=2.5e-4,
)
elif scheduler_type == "exponential":
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma=decay_factor,
last_epoch=-1,
)
elif scheduler_type == "cosine":
size_dataset = DATASET_SIZES[cfg.dataset]
if warmup:
# If warmup is used, then we need to substract this from T_max.
T_max = (cfg.train.epochs - warmup_epochs) * math.ceil(
size_dataset / float(cfg.train.batch_size)
) # - warmup epochs
else:
T_max = cfg.train.epochs * math.ceil(
size_dataset / float(cfg.train.batch_size)
)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=T_max,
eta_min=1e-6,
)
else:
lr_scheduler = None
print(
f"WARNING! No scheduler will be used. cfg.train.scheduler = {scheduler_type}"
)
if warmup and lr_scheduler is not None:
size_dataset = DATASET_SIZES[cfg.dataset]
lr_scheduler = ckconv.nn.LinearWarmUp_LRScheduler(
optimizer=optimizer,
lr_scheduler=lr_scheduler,
warmup_iterations=warmup_epochs
* math.ceil(size_dataset / float(cfg.train.batch_size)),
)
return lr_scheduler