-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
155 lines (123 loc) · 5.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import set_keep
import numpy as np
import resnet_model
import argparse
parser = argparse.ArgumentParser(description='Define parameters.')
parser.add_argument('--n_epoch', type=int, default=10)
parser.add_argument('--n_batch', type=int, default=64)
parser.add_argument('--n_img_row', type=int, default=32)
parser.add_argument('--n_img_col', type=int, default=32)
parser.add_argument('--n_img_channels', type=int, default=3)
parser.add_argument('--n_classes', type=int, default=10)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--n_resid_units', type=int, default=5)
parser.add_argument('--lr_schedule', type=int, default=60)
parser.add_argument('--lr_factor', type=float, default=0.1)
args = parser.parse_args()
class CNNEnv:
def __init__(self):
# The data, shuffled and split between train and test sets
self.x_train, self.y_train, self.x_test, self.y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False)
# Reorder dimensions for tensorflow
self.mean = np.mean(self.x_train, axis=0, keepdims=True)
self.std = np.std(self.x_train)
self.x_train = (self.x_train - self.mean) / self.std
self.x_test = (self.x_test - self.mean) / self.std
print('x_train shape:', self.x_train.shape)
print('x_test shape:', self.x_test.shape)
print('y_train shape:', self.y_train.shape)
print('y_test shape:', self.y_test.shape)
# For generator
self.num_examples = self.x_train.shape[0]
self.index_in_epoch = 0
self.epochs_completed = 0
# Basic info
self.batch_num = args.n_batch
self.num_epoch = args.n_epoch
self.img_row = args.n_img_row
self.img_col = args.n_img_col
self.img_channels = args.n_img_channels
self.nb_classes = args.n_classes
self.num_iter = self.x_train.shape[0] / self.batch_num # per epoch
def next_batch(self, batch_size):
"""Return the next `batch_size` examples from this data set."""
self.batch_size = batch_size
start = self.index_in_epoch
self.index_in_epoch += self.batch_size
if self.index_in_epoch > self.num_examples:
# Finished epoch
self.epochs_completed += 1
# Shuffle the data
perm = np.arange(self.num_examples)
np.random.shuffle(perm)
self.x_train = self.x_train[perm]
self.y_train = self.y_train[perm]
# Start next epoch
start = 0
self.index_in_epoch = self.batch_size
assert self.batch_size <= self.num_examples
end = self.index_in_epoch
return self.x_train[start:end], self.y_train[start:end]
def train(self, hps):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=config)
img = tf.placeholder(tf.float32, shape=[self.batch_num, 32, 32, 3])
labels = tf.placeholder(tf.int32, shape=[self.batch_num, ])
model = resnet_model.ResNet(hps, img, labels, 'train')
model.build_graph()
merged = model.summaries
train_writer = tf.summary.FileWriter("/tmp/train_log", sess.graph)
sess.run(tf.global_variables_initializer())
print('Done initializing variables')
print('Running model...')
# Set default learning rate for scheduling
lr = args.lr
for j in range(self.num_epoch):
print('Epoch {}'.format(j+1))
# Decrease learning rate every args.lr_schedule epoch
# By args.lr_factor
if (j + 1) % args.lr_schedule == 0:
lr *= args.lr_factor
for i in range(self.num_iter):
batch = self.next_batch(self.batch_num)
feed_dict = {img: batch[0],
labels: batch[1],
model.lrn_rate: lr}
_, l, ac, summary, lr = sess.run([model.train_op, model.cost, model.acc, merged, model.lrn_rate], feed_dict=feed_dict)
train_writer.add_summary(summary, i)
#
if i % 200 == 0:
print('step', i+1)
print('Training loss', l)
print('Training accuracy', ac)
print('Learning rate', lr)
print('Running evaluation...')
test_loss, test_acc, n_batch = 0, 0, 0
for batch in tl.iterate.minibatches(inputs=self.x_test,
targets=self.y_test,
batch_size=self.batch_num,
shuffle=False):
feed_dict_eval = {img: batch[0], labels: batch[1]}
loss, ac = sess.run([model.cost, model.acc], feed_dict=feed_dict_eval)
test_loss += loss
test_acc += ac
n_batch += 1
tot_test_loss = test_loss / n_batch
tot_test_acc = test_acc / n_batch
print(' Test loss: {}'.format(tot_test_loss))
print(' Test accuracy: {}'.format(tot_test_acc))
print('Completed training and evaluation.')
run = CNNEnv()
hps = resnet_model.HParams(batch_size=run.batch_num,
num_classes=run.nb_classes,
min_lrn_rate=0.0001,
lrn_rate=args.lr,
num_residual_units=args.n_resid_units,
use_bottleneck=False,
weight_decay_rate=0.0002,
relu_leakiness=0.1,
optimizer='mom')
run.train(hps)