-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtrain_fastspeech.py
465 lines (409 loc) · 16.6 KB
/
train_fastspeech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import fastspeech
from tensorboardX import SummaryWriter
import torch
from dataset import dataloader as loader
import logging
import math
import os
import sys
import numpy as np
import configargparse
import random
import tqdm
import time
from evaluation import evaluate
from utils.plot import generate_audio, plot_spectrogram_to_numpy
from core.optimizer import get_std_opt
from utils.util import read_wav_np
from dataset.texts import valid_symbols
from utils.util import get_commit_hash
from utils.hparams import HParam
BATCH_COUNT_CHOICES = ["auto", "seq", "bin", "frame"]
BATCH_SORT_KEY_CHOICES = ["input", "output", "shuffle"]
def train(args, hp, hp_str, logger, vocoder):
os.makedirs(os.path.join(hp.train.chkpt_dir, args.name), exist_ok=True)
os.makedirs(os.path.join(args.outdir, args.name), exist_ok=True)
os.makedirs(os.path.join(args.outdir, args.name, "assets"), exist_ok=True)
device = torch.device("cuda" if hp.train.ngpu > 0 else "cpu")
dataloader = loader.get_tts_dataset(hp.data.data_dir, hp.train.batch_size, hp)
validloader = loader.get_tts_dataset(hp.data.data_dir, 1, hp, True)
idim = len(valid_symbols)
odim = hp.audio.num_mels
model = fastspeech.FeedForwardTransformer(idim, odim, hp)
# set torch device
model = model.to(device)
print("Model is loaded ...")
githash = get_commit_hash()
if args.checkpoint_path is not None:
if os.path.exists(args.checkpoint_path):
logger.info("Resuming from checkpoint: %s" % args.checkpoint_path)
checkpoint = torch.load(args.checkpoint_path)
model.load_state_dict(checkpoint["model"])
optimizer = get_std_opt(
model,
hp.model.adim,
hp.model.transformer_warmup_steps,
hp.model.transformer_lr,
)
optimizer.load_state_dict(checkpoint["optim"])
global_step = checkpoint["step"]
if hp_str != checkpoint["hp_str"]:
logger.warning(
"New hparams is different from checkpoint. Will use new."
)
if githash != checkpoint["githash"]:
logger.warning("Code might be different: git hash is different.")
logger.warning("%s -> %s" % (checkpoint["githash"], githash))
else:
print("Checkpoint does not exixts")
global_step = 0
return None
else:
print("New Training")
global_step = 0
optimizer = get_std_opt(
model,
hp.model.adim,
hp.model.transformer_warmup_steps,
hp.model.transformer_lr,
)
print("Batch Size :", hp.train.batch_size)
num_params(model)
os.makedirs(os.path.join(hp.train.log_dir, args.name), exist_ok=True)
writer = SummaryWriter(os.path.join(hp.train.log_dir, args.name))
model.train()
forward_count = 0
phn_level_predictor = False
# print(model)
for epoch in range(hp.train.epochs):
start = time.time()
running_loss = 0
j = 0
pbar = tqdm.tqdm(dataloader, desc="Loading train data")
for data in pbar:
global_step += 1
if hp.model.phoneme_acoustic_embed and global_step >= hp.model.predictor_start_step:
phn_level_predictor = True
x, input_length, y, _, out_length, _, dur, e, p, avg_mel = data
# x : [batch , num_char], input_length : [batch], y : [batch, T_in, num_mel]
# # stop_token : [batch, T_in], out_length : [batch]
loss, report_dict = model(
x.cuda(),
input_length.cuda(),
y.cuda(),
out_length.cuda(),
dur.cuda(),
e.cuda(),
p.cuda(),
avg_mel.cuda(),
phn_level_predictor
)
loss = loss.mean() / hp.train.accum_grad
running_loss += loss.item()
loss.backward()
# update parameters
forward_count += 1
j = j + 1
if forward_count != hp.train.accum_grad:
continue
forward_count = 0
step = global_step
# compute the gradient norm to check if it is normal or not
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), hp.train.grad_clip
)
logging.debug("grad norm={}".format(grad_norm))
if math.isnan(grad_norm):
logging.warning("grad norm is nan. Do not update model.")
else:
optimizer.step()
optimizer.zero_grad()
if step % hp.train.summary_interval == 0:
pbar.set_description(
"Average Loss %.04f Loss %.04f | step %d"
% (running_loss / j, loss.item(), step)
)
for r in report_dict:
for k, v in r.items():
if k is not None and v is not None:
if "cupy" in str(type(v)):
v = v.get()
if "cupy" in str(type(k)):
k = k.get()
writer.add_scalar("main/{}".format(k), v, step)
if step % hp.train.validation_step == 0:
for valid in validloader:
x_, input_length_, y_, _, out_length_, ids_, dur_, e_, p_, avg_mel_ = valid
model.eval()
with torch.no_grad():
loss_, report_dict_ = model(
x_.cuda(),
input_length_.cuda(),
y_.cuda(),
out_length_.cuda(),
dur_.cuda(),
e_.cuda(),
p_.cuda(),
avg_mel_.cuda(),
phn_level_predictor
)
mels_ = model.inference(x_[-1].cuda(), ref_mel = y_[-1].cuda(), avg_mel = avg_mel_[-1].cuda(),
phn_level_predictor = phn_level_predictor) # [T, num_mel]
model.train()
for r in report_dict_:
for k, v in r.items():
if k is not None and v is not None:
if "cupy" in str(type(v)):
v = v.get()
if "cupy" in str(type(k)):
k = k.get()
writer.add_scalar("validation/{}".format(k), v, step)
mels_ = mels_.T # Out: [num_mels, T]
writer.add_image(
"melspectrogram_target_{}".format(ids_[-1]),
plot_spectrogram_to_numpy(
y_[-1].T.data.cpu().numpy()[:, : out_length_[-1]]
),
step,
dataformats="HWC",
)
writer.add_image(
"melspectrogram_prediction_{}".format(ids_[-1]),
plot_spectrogram_to_numpy(mels_.data.cpu().numpy()),
step,
dataformats="HWC",
)
# print(mels.unsqueeze(0).shape)
audio = generate_audio(
mels_.unsqueeze(0), vocoder
) # selecting the last data point to match mel generated above
audio = audio.cpu().float().numpy()
audio = audio / (
audio.max() - audio.min()
) # get values between -1 and 1
writer.add_audio(
tag="generated_audio_{}".format(ids_[-1]),
snd_tensor=torch.Tensor(audio),
global_step=step,
sample_rate=hp.audio.sample_rate,
)
_, target = read_wav_np(
hp.data.wav_dir + f"{ids_[-1]}.wav",
sample_rate=hp.audio.sample_rate,
)
writer.add_audio(
tag=" target_audio_{}".format(ids_[-1]),
snd_tensor=torch.Tensor(target),
global_step=step,
sample_rate=hp.audio.sample_rate,
)
##
if step % hp.train.save_interval == 0:
avg_p, avg_e, avg_d = evaluate(hp, validloader, model)
writer.add_scalar("evaluation/Pitch_Loss", avg_p, step)
writer.add_scalar("evaluation/Energy_Loss", avg_e, step)
writer.add_scalar("evaluation/Dur_Loss", avg_d, step)
save_path = os.path.join(
hp.train.chkpt_dir,
args.name,
"{}_fastspeech_{}_{}k_steps.pyt".format(
args.name, githash, step // 1000
),
)
torch.save(
{
"model": model.state_dict(),
"optim": optimizer.state_dict(),
"step": step,
"hp_str": hp_str,
"githash": githash,
},
save_path,
)
logger.info("Saved checkpoint to: %s" % save_path)
print(
"Time taken for epoch {} is {} sec\n".format(
epoch + 1, int(time.time() - start)
)
)
def num_params(model, print_out=True):
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print("Trainable Parameters: %.3fM" % parameters)
def create_gta(args, hp, hp_str, logger):
os.makedirs(os.path.join(hp.data.data_dir, "gta"), exist_ok=True)
device = torch.device("cuda" if hp.train.ngpu > 0 else "cpu")
dataloader = loader.get_tts_dataset(hp.data.data_dir, 1)
validloader = loader.get_tts_dataset(hp.data.data_dir, 1, True)
global_step = 0
idim = len(valid_symbols)
odim = hp.audio.num_mels
model = fastspeech.FeedForwardTransformer(idim, odim, args)
# set torch device
if os.path.exists(args.checkpoint_path):
print("\nSynthesis GTA Session...\n")
checkpoint = torch.load(args.checkpoint_path)
model.load_state_dict(checkpoint["model"])
else:
print("Checkpoint not exixts")
return None
model.eval()
model = model.to(device)
print("Model is loaded ...")
print("Batch Size :", hp.train.batch_size)
num_params(model)
onlyValidation = False
if not onlyValidation:
pbar = tqdm.tqdm(dataloader, desc="Loading train data")
for data in pbar:
# start_b = time.time()
global_step += 1
x, input_length, y, _, out_length, ids = data
with torch.no_grad():
_, gta, _, _, _ = model._forward(
x.cuda(), input_length.cuda(), y.cuda(), out_length.cuda()
)
# gta = model._forward(x.cuda(), input_length.cuda(), is_inference=False)
gta = gta.cpu().numpy()
for j in range(len(ids)):
mel = gta[j]
mel = mel.T
mel = mel[:, : out_length[j]]
mel = (mel + 4) / 8
id = ids[j]
np.save(
"{}/{}.npy".format(os.path.join(hp.data.data_dir, "gta"), id),
mel,
allow_pickle=False,
)
pbar = tqdm.tqdm(validloader, desc="Loading Valid data")
for data in pbar:
# start_b = time.time()
global_step += 1
x, input_length, y, _, out_length, ids = data
with torch.no_grad():
gta, _, _ = model._forward(
x.cuda(), input_length.cuda(), y.cuda(), out_length.cuda()
)
# gta = model._forward(x.cuda(), input_length.cuda(), is_inference=True)
gta = gta.cpu().numpy()
for j in range(len(ids)):
print("Actual mel specs : {} = {}".format(ids[j], y[j].shape))
print("Out length:", out_length[j])
print("GTA size: {} = {}".format(ids[j], gta[j].shape))
mel = gta[j]
mel = mel.T
mel = mel[:, : out_length[j]]
mel = (mel + 4) / 8
print("Mel size: {} = {}".format(ids[j], mel.shape))
id = ids[j]
np.save(
"{}/{}.npy".format(os.path.join(hp.data.data_dir, "gta"), id),
mel,
allow_pickle=False,
)
# define function for plot prob and att_ws
def _plot_and_save(array, figname, figsize=(6, 4), dpi=150):
import matplotlib.pyplot as plt
shape = array.shape
if len(shape) == 1:
# for eos probability
fig = plt.figure(figsize=figsize, dpi=dpi)
plt.plot(array)
plt.xlabel("Frame")
plt.ylabel("Probability")
plt.ylim([0, 1])
elif len(shape) == 2:
# for tacotron 2 attention weights, whose shape is (out_length, in_length)
fig = plt.figure(figsize=figsize, dpi=dpi)
plt.imshow(array, aspect="auto")
plt.xlabel("Input")
plt.ylabel("Output")
elif len(shape) == 4:
# for transformer attention weights, whose shape is (#leyers, #heads, out_length, in_length)
fig = plt.figure(
figsize=(figsize[0] * shape[0], figsize[1] * shape[1]), dpi=dpi
)
for idx1, xs in enumerate(array):
for idx2, x in enumerate(xs, 1):
plt.subplot(shape[0], shape[1], idx1 * shape[1] + idx2)
plt.imshow(x.cpu().detach().numpy(), aspect="auto")
plt.xlabel("Input")
plt.ylabel("Output")
else:
raise NotImplementedError("Support only from 1D to 4D array.")
plt.tight_layout()
if not os.path.exists(os.path.dirname(figname)):
# NOTE: exist_ok = True is needed for parallel process decoding
os.makedirs(os.path.dirname(figname), exist_ok=True)
plt.savefig(figname)
plt.close()
return fig
# NOTE: you need this func to generate our sphinx doc
def get_parser():
"""Get parser of training arguments."""
parser = configargparse.ArgumentParser(
description="Train a new text-to-speech (TTS) model on one CPU, one or multiple GPUs",
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"-c", "--config", type=str, required=True, help="yaml file for configuration"
)
parser.add_argument(
"-p",
"--checkpoint_path",
type=str,
default=None,
help="path of checkpoint pt file to resume training",
)
parser.add_argument(
"-n",
"--name",
type=str,
required=True,
help="name of the model for logging, saving checkpoint",
)
parser.add_argument("--outdir", type=str, required=True, help="Output directory")
return parser
def main(cmd_args):
"""Run training."""
parser = get_parser()
args, _ = parser.parse_known_args(cmd_args)
args = parser.parse_args(cmd_args)
hp = HParam(args.config)
with open(args.config, "r") as f:
hp_str = "".join(f.readlines())
# logging info
os.makedirs(hp.train.log_dir, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler(
os.path.join(hp.train.log_dir, "%s-%d.log" % (args.name, time.time()))
),
logging.StreamHandler(),
],
)
logger = logging.getLogger()
# If --ngpu is not given,
# 1. if CUDA_VISIBLE_DEVICES is set, all visible devices
# 2. if nvidia-smi exists, use all devices
# 3. else ngpu=0
ngpu = hp.train.ngpu
logger.info(f"ngpu: {ngpu}")
# set random seed
logger.info("random seed = %d" % hp.train.seed)
random.seed(hp.train.seed)
np.random.seed(hp.train.seed)
vocoder = torch.hub.load(
"seungwonpark/melgan", "melgan"
) # load the vocoder for validation
if hp.train.GTA:
create_gta(args, hp, hp_str, logger)
else:
train(args, hp, hp_str, logger, vocoder)
if __name__ == "__main__":
main(sys.argv[1:])