diff --git a/docs/vision-usage.rst b/docs/vision-usage.rst index c8a0a398346a..ffa31fb94562 100644 --- a/docs/vision-usage.rst +++ b/docs/vision-usage.rst @@ -84,15 +84,14 @@ You can call the detection method manually. >>> features = [Feature(FeatureTypes.FACE_DETECTION, 5), ... Feature(FeatureTypes.LOGO_DETECTION, 3)] >>> annotations = image.detect(features) - >>> len(annotations.faces) + >>> len(annotations) 2 - >>> for face in annotations.faces: - ... print(face.joy_likelihood) - 0.94099093 - 0.54453093 - >>> len(annotations.logos) - 2 - >>> for logo in annotations.logos: + >>> for face in annotations[0].faces: + ... print(face.joy) + Likelihood.VERY_LIKELY + Likelihood.VERY_LIKELY + Likelihood.VERY_LIKELY + >>> for logo in annotations[0].logos: ... print(logo.description) 'google' 'github' @@ -140,15 +139,15 @@ was detected. >>> faces = image.detect_faces(limit=10) >>> first_face = faces[0] >>> first_face.landmarks.left_eye.landmark_type - + LandmarkTypes.LEFT_EYE >>> first_face.landmarks.left_eye.position.x_coordinate 1301.2404 >>> first_face.detection_confidence 0.9863683 >>> first_face.joy - + Likelihood.VERY_UNLIKELY >>> first_face.anger - + Likelihood.VERY_UNLIKELY *************** @@ -250,13 +249,13 @@ categorize the entire contents of the image under four categories. ... image = client.image(content=image_file.read()) >>> safe_search = image.detect_safe_search() >>> safe_search.adult - + Likelihood.VERY_UNLIKELY >>> safe_search.spoof - + Likelihood.POSSIBLE >>> safe_search.medical - + Likelihood.VERY_LIKELY >>> safe_search.violence - + Likelihood.LIKELY ************** @@ -297,9 +296,9 @@ image and determine the dominant colors in the image. >>> properties = image.detect_properties() >>> colors = properties.colors >>> first_color = colors[0] - >>> first_color.red + >>> first_color.color.red 244.0 - >>> first_color.blue + >>> first_color.color.blue 134.0 >>> first_color.score 0.65519291