forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggml-cuda.cu
3084 lines (2552 loc) · 119 KB
/
ggml-cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "ggml-cuda.h"
#include "ggml.h"
#include "ggml-backend-impl.h"
#include "ggml-cuda/common.cuh"
#include "ggml-cuda/acc.cuh"
#include "ggml-cuda/arange.cuh"
#include "ggml-cuda/argsort.cuh"
#include "ggml-cuda/binbcast.cuh"
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/convert.cuh"
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/dmmv.cuh"
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/getrows.cuh"
#include "ggml-cuda/im2col.cuh"
#include "ggml-cuda/mmq.cuh"
#include "ggml-cuda/mmvq.cuh"
#include "ggml-cuda/norm.cuh"
#include "ggml-cuda/pad.cuh"
#include "ggml-cuda/pool2d.cuh"
#include "ggml-cuda/quantize.cuh"
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/sumrows.cuh"
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
#include <algorithm>
#include <array>
#include <atomic>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <float.h>
#include <limits>
#include <map>
#include <memory>
#include <mutex>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string>
#include <vector>
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
static void ggml_cuda_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
GGML_UNUSED(level);
GGML_UNUSED(user_data);
fprintf(stderr, "%s", msg);
}
ggml_log_callback ggml_cuda_log_callback = ggml_cuda_default_log_callback;
void * ggml_cuda_log_user_data = NULL;
GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data) {
ggml_cuda_log_callback = log_callback;
ggml_cuda_log_user_data = user_data;
}
#define GGML_CUDA_LOG_INFO(...) ggml_cuda_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define GGML_CUDA_LOG_WARN(...) ggml_cuda_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define GGML_CUDA_LOG_ERROR(...) ggml_cuda_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
GGML_ATTRIBUTE_FORMAT(2, 3)
static void ggml_cuda_log(enum ggml_log_level level, const char * format, ...) {
if (ggml_cuda_log_callback != NULL) {
va_list args;
va_start(args, format);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
ggml_cuda_log_callback(level, buffer, ggml_cuda_log_user_data);
} else {
std::vector<char> buffer2(len + 1); // vsnprintf adds a null terminator
va_end(args);
va_start(args, format);
vsnprintf(&buffer2[0], buffer2.size(), format, args);
ggml_cuda_log_callback(level, buffer2.data(), ggml_cuda_log_user_data);
}
va_end(args);
}
}
[[noreturn]]
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
int id = -1; // in case cudaGetDevice fails
cudaGetDevice(&id);
GGML_CUDA_LOG_ERROR("CUDA error: %s\n", msg);
GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
GGML_CUDA_LOG_ERROR(" %s\n", stmt);
// abort with GGML_ASSERT to get a stack trace
GGML_ASSERT(!"CUDA error");
}
// this is faster on Windows
// probably because the Windows CUDA libraries forget to make this check before invoking the drivers
void ggml_cuda_set_device(int device) {
int current_device;
CUDA_CHECK(cudaGetDevice(¤t_device));
if (device == current_device) {
return;
}
CUDA_CHECK(cudaSetDevice(device));
}
int ggml_cuda_get_device() {
int id;
CUDA_CHECK(cudaGetDevice(&id));
return id;
}
static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__
// Workaround for a rocBLAS bug when using multiple graphics cards:
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
rocblas_initialize();
CUDA_CHECK(cudaDeviceSynchronize());
#endif
ggml_cuda_device_info info = {};
cudaError_t err = cudaGetDeviceCount(&info.device_count);
if (err != cudaSuccess) {
GGML_CUDA_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
return info;
}
GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
int64_t total_vram = 0;
#if defined(GGML_CUDA_FORCE_MMQ)
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
#else
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
#endif
#if defined(CUDA_USE_TENSOR_CORES)
GGML_CUDA_LOG_INFO("%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
#else
GGML_CUDA_LOG_INFO("%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
#endif
GGML_CUDA_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
if (device_vmm) {
CUmemAllocationProp alloc_prop = {};
alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
alloc_prop.location.id = id;
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
}
#endif // !defined(GGML_USE_HIPBLAS)
info.devices[id].vmm = !!device_vmm;
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
GGML_CUDA_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
info.default_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem;
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
#else
info.devices[id].cc = 100*prop.major + 10*prop.minor;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].nsm = prop.multiProcessorCount;
}
for (int id = 0; id < info.device_count; ++id) {
info.default_tensor_split[id] /= total_vram;
}
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
return info;
}
const ggml_cuda_device_info & ggml_cuda_info() {
static ggml_cuda_device_info info = ggml_cuda_init();
return info;
}
// #define DEBUG_CUDA_MALLOC
// buffer pool for cuda (legacy)
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
static const int MAX_BUFFERS = 256;
int device;
struct ggml_cuda_buffer {
void * ptr = nullptr;
size_t size = 0;
};
ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
size_t pool_size = 0;
explicit ggml_cuda_pool_leg(int device) :
device(device) {
}
~ggml_cuda_pool_leg() {
ggml_cuda_set_device(device);
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer & b = buffer_pool[i];
if (b.ptr != nullptr) {
CUDA_CHECK(cudaFree(b.ptr));
pool_size -= b.size;
}
}
GGML_ASSERT(pool_size == 0);
}
void * alloc(size_t size, size_t * actual_size) override {
#ifdef DEBUG_CUDA_MALLOC
int nnz = 0;
size_t max_size = 0;
#endif
size_t best_diff = 1ull << 36;
int ibest = -1;
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer& b = buffer_pool[i];
if (b.ptr != nullptr) {
#ifdef DEBUG_CUDA_MALLOC
++nnz;
if (b.size > max_size) max_size = b.size;
#endif
if (b.size >= size) {
size_t diff = b.size - size;
if (diff < best_diff) {
best_diff = diff;
ibest = i;
if (!best_diff) {
void * ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
}
}
}
}
if (ibest >= 0) {
ggml_cuda_buffer& b = buffer_pool[ibest];
void * ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
void * ptr;
size_t look_ahead_size = (size_t) (1.05 * size);
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
ggml_cuda_set_device(device);
CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
*actual_size = look_ahead_size;
pool_size += look_ahead_size;
#ifdef DEBUG_CUDA_MALLOC
GGML_CUDA_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
(uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024));
#endif
return ptr;
}
void free(void * ptr, size_t size) override {
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer& b = buffer_pool[i];
if (b.ptr == nullptr) {
b.ptr = ptr;
b.size = size;
return;
}
}
GGML_CUDA_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
ggml_cuda_set_device(device);
CUDA_CHECK(cudaFree(ptr));
pool_size -= size;
}
};
// pool with virtual memory
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
int device;
CUdeviceptr pool_addr = 0;
size_t pool_used = 0;
size_t pool_size = 0;
size_t granularity;
explicit ggml_cuda_pool_vmm(int device) :
device(device),
granularity(ggml_cuda_info().devices[device].vmm_granularity) {
}
~ggml_cuda_pool_vmm() {
if (pool_addr != 0) {
CU_CHECK(cuMemUnmap(pool_addr, pool_size));
CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
}
}
void * alloc(size_t size, size_t * actual_size) override {
// round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
const size_t alignment = 128;
size = alignment * ((size + alignment - 1) / alignment);
size_t avail = pool_size - pool_used;
if (size > avail) {
// round up to the next multiple of the granularity
size_t reserve_size = size - avail;
reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
// allocate more physical memory
CUmemAllocationProp prop = {};
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = device;
CUmemGenericAllocationHandle handle;
CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
// reserve virtual address space (if not already reserved)
if (pool_addr == 0) {
CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
}
// map at the end of the pool
CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
// the memory allocation handle is no longer needed after mapping
CU_CHECK(cuMemRelease(handle));
// set access
CUmemAccessDesc access = {};
access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
access.location.id = device;
access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
// add to the pool
pool_size += reserve_size;
//printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
// device, (unsigned long long) (pool_size/1024/1024),
// (unsigned long long) (reserve_size/1024/1024));
}
GGML_ASSERT(pool_addr != 0);
void * ptr = (void *) (pool_addr + pool_used);
*actual_size = size;
pool_used += size;
#ifdef DEBUG_CUDA_MALLOC
printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
#endif
return ptr;
}
void free(void * ptr, size_t size) override {
#ifdef DEBUG_CUDA_MALLOC
printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
#endif
pool_used -= size;
// all deallocations must be in reverse order of the allocations
GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
}
};
#endif // !defined(GGML_USE_HIPBLAS)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
}
#endif
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}
// cuda buffer
struct ggml_backend_cuda_buffer_context {
int device;
void * dev_ptr = nullptr;
std::string name;
ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
device(device), dev_ptr(dev_ptr),
name(GGML_CUDA_NAME + std::to_string(device)) {
}
~ggml_backend_cuda_buffer_context() {
CUDA_CHECK(cudaFree(dev_ptr));
}
};
GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->name.c_str();
}
GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
}
GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
delete ctx;
}
GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->dev_ptr;
}
GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
return;
}
if (ggml_is_quantized(tensor->type)) {
// initialize padding to 0 to avoid possible NaN values
size_t original_size = ggml_nbytes(tensor);
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
if (padded_size > original_size && tensor->view_src == nullptr) {
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
}
}
}
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_cuda(src->buffer)) {
ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
if (src_ctx->device == dst_ctx->device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
} else {
#ifdef GGML_CUDA_NO_PEER_COPY
return false;
#else
CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
#endif
}
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
return true;
}
return false;
GGML_UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
CUDA_CHECK(cudaDeviceSynchronize());
}
static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cuda_buffer_clear,
/* .reset = */ NULL,
};
// cuda buffer type
struct ggml_backend_cuda_buffer_type_context {
int device;
std::string name;
};
GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
ggml_cuda_set_device(buft_ctx->device);
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
void * dev_ptr;
cudaError_t err = cudaMalloc(&dev_ptr, size);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
GGML_CUDA_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
return nullptr;
}
ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
}
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
if (ggml_is_quantized(tensor->type)) {
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}
return size;
GGML_UNUSED(buft);
}
GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
if (!ggml_backend_is_cuda(backend)) {
return false;
}
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return buft_ctx->device == cuda_ctx->device;
}
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
/* .get_name = */ ggml_backend_cuda_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
/* .is_host = */ NULL,
};
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (device >= ggml_backend_cuda_get_device_count()) {
return nullptr;
}
static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
static bool ggml_backend_cuda_buffer_type_initialized = false;
if (!ggml_backend_cuda_buffer_type_initialized) {
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
ggml_backend_cuda_buffer_types[i] = {
/* .iface = */ ggml_backend_cuda_buffer_type_interface,
/* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
};
}
ggml_backend_cuda_buffer_type_initialized = true;
}
return &ggml_backend_cuda_buffer_types[device];
}
// cuda split buffer
static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
int64_t min_compute_capability = INT_MAX;
int64_t max_compute_capability = INT_MIN;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
min_compute_capability = ggml_cuda_info().devices[id].cc;
}
if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
max_compute_capability = ggml_cuda_info().devices[id].cc;
}
}
}
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
switch(type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return 1;
case GGML_TYPE_Q2_K:
return max_compute_capability >= CC_RDNA2 ? 128 : 32;
case GGML_TYPE_Q3_K:
return min_compute_capability < CC_RDNA2 ? 128 : 64;
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
default:
GGML_ASSERT(false);
}
#else
switch(type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
return max_compute_capability >= CC_VOLTA ? 128 : 64;
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
return 64;
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return 1;
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
return max_compute_capability >= CC_VOLTA ? 128 : 64;
case GGML_TYPE_Q6_K:
return 64;
default:
GGML_ASSERT(false);
}
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
}
static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
const int64_t nrows = ggml_nrows(tensor);
const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
*row_low = id == 0 ? 0 : nrows*tensor_split[id];
*row_low -= *row_low % rounding;
if (id == ggml_backend_cuda_get_device_count() - 1) {
*row_high = nrows;
} else {
*row_high = nrows*tensor_split[id + 1];
*row_high -= *row_high % rounding;
}
}
static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
}
struct ggml_backend_cuda_split_buffer_type_context {
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
};
struct ggml_backend_cuda_split_buffer_context {
~ggml_backend_cuda_split_buffer_context() {
for (ggml_tensor_extra_gpu * extra : tensor_extras) {
for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
if (extra->events[id][is] != nullptr) {
CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
}
}
if (extra->data_device[id] != nullptr) {
CUDA_CHECK(cudaFree(extra->data_device[id]));
}
}
delete extra;
}
}
std::vector<ggml_tensor_extra_gpu *> tensor_extras;
};
GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buffer);
}
static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
}
GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
delete ctx;
}
GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
return (void *)0x1000;
GGML_UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
const int64_t ne0 = tensor->ne[0];
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
ctx->tensor_extras.push_back(extra);
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
int64_t row_low, row_high;
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
int64_t nrows_split = row_high - row_low;
if (nrows_split == 0) {
continue;
}
size_t size = ggml_nbytes_split(tensor, nrows_split);
const size_t original_size = size;
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
// FIXME: do not crash if cudaMalloc fails
// currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
ggml_cuda_set_device(id);
char * buf;
CUDA_CHECK(cudaMalloc(&buf, size));
// set padding to 0 to avoid possible NaN values
if (size > original_size) {
CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
}
extra->data_device[id] = buf;
for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
}
}
tensor->extra = extra;
}
GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
const int64_t ne0 = tensor->ne[0];
const size_t nb1 = tensor->nb[1];
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
int64_t row_low, row_high;
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
int64_t nrows_split = row_high - row_low;
if (nrows_split == 0) {
continue;
}
const size_t offset_split = row_low*nb1;
size_t size = ggml_nbytes_split(tensor, nrows_split);
const size_t original_size = size;
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
const char * buf_host = (const char *)data + offset_split;
CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
}
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
}
GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
const int64_t ne0 = tensor->ne[0];
const size_t nb1 = tensor->nb[1];
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
int64_t row_low, row_high;
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
int64_t nrows_split = row_high - row_low;
if (nrows_split == 0) {
continue;
}
const size_t offset_split = row_low*nb1;
size_t size = ggml_nbytes_split(tensor, nrows_split);
const size_t original_size = size;
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
char * buf_host = (char *)data + offset_split;
CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
}
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
}
GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_UNUSED(buffer);
GGML_UNUSED(value);
}
static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_cuda_split_buffer_clear,
/* .reset = */ NULL,
};
// cuda split buffer type
GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buft);
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
// instead, we allocate them for each tensor separately in init_tensor
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
// as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
}
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
size_t total_size = 0;
const int64_t ne0 = tensor->ne[0];
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
int64_t row_low, row_high;
get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
int64_t nrows_split = row_high - row_low;
if (nrows_split == 0) {
continue;
}
total_size += ggml_nbytes_split(tensor, nrows_split);
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}
return total_size;
}
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
return ggml_backend_is_cuda(backend);
GGML_UNUSED(buft);
}
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return false;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
/* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
/* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
};
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
if (all_zero) {
tensor_split_arr = ggml_cuda_info().default_tensor_split;
} else {
float split_sum = 0.0f;
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
tensor_split_arr[i] = split_sum;
split_sum += tensor_split[i];
}
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {