-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsignature_analysis.py
631 lines (571 loc) · 30.6 KB
/
signature_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import pandas as pd
import scipy.stats
from statistics import mean
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from lifelines import CoxPHFitter
from lifelines import KaplanMeierFitter
from lifelines.statistics import logrank_test, multivariate_logrank_test
from statsmodels.stats.multitest import multipletests
from lifelines.plotting import add_at_risk_counts
if __name__ == '__main__':
signature = ['StromalScore', 'ImmuneScore', 'ESTIMATEScore', 'AdenoSig',
'JAVELIN_26', 'Angio_Score', 'Teff_Score', 'Myeloid_Score']
results_dir = 'revision/results_lennert_project'
# BraunEtAl
len_samples = 311
data = pd.read_csv(f'{results_dir}/Braun_et_al.ClinicalAndDeconvolution.csv', header=0, index_col='RNA_ID')
# Unify datasets
cols = []
cols.extend(signature)
cols.extend(['Age', 'Sex', 'OS', 'OS_CNSR', 'PFS', 'PFS_CNSR','Arm', 'Tumor_Sample_Primary_or_Metastas', 'ORR'])
survival_df = data[cols]
survival_df = survival_df.rename({'Age': 'AGE'}, axis=1)
survival_df = survival_df.rename({'Sex': 'SEX'}, axis=1)
survival_df.loc[survival_df['SEX'] == 'Female', 'SEX'] = 'F'
survival_df.loc[survival_df['SEX'] == 'FEMALE', 'SEX'] = 'F'
survival_df.loc[survival_df['SEX'] == 'MALE', 'SEX'] = 'M'
survival_df.loc[survival_df['SEX'] == 'Male', 'SEX'] = 'M'
survival_df.loc[survival_df['PFS_CNSR'] == 0, 'PFS_EVENT'] = 1
survival_df.loc[survival_df['PFS_CNSR'] == 1, 'PFS_EVENT'] = 0
survival_df.loc[survival_df['OS_CNSR'] == 0, 'OS_EVENT'] = 1
survival_df.loc[survival_df['OS_CNSR'] == 1, 'OS_EVENT'] = 0
survival_df = survival_df.rename({'OS': 'OS_MO'}, axis=1)
survival_df = survival_df.rename({'PFS': 'PFS_MO'}, axis=1)
# survival_df = survival_df.drop(columns= ['PFS_CNSR','OS_CNSR'])
survival_df['Dataset'] = 'BraunEtAl'
survival_df = survival_df[survival_df['Myeloid_Score'].notna()]
survival_df_T_P = survival_df.loc[(survival_df['Arm']=='NIVOLUMAB') & (survival_df['Tumor_Sample_Primary_or_Metastas']=='PRIMARY')]
survival_df_T_M = survival_df.loc[(survival_df['Arm']=='NIVOLUMAB') & (survival_df['Tumor_Sample_Primary_or_Metastas']=='METASTASIS')]
survival_df_C_P = survival_df.loc[(survival_df['Arm']=='EVEROLIMUS') & (survival_df['Tumor_Sample_Primary_or_Metastas']=='PRIMARY')]
survival_df_C_M = survival_df.loc[(survival_df['Arm']=='EVEROLIMUS') & (survival_df['Tumor_Sample_Primary_or_Metastas']=='METASTASIS')]
survival_df_T = survival_df.loc[survival_df['Arm']=='NIVOLUMAB' ]
survival_df_C = survival_df.loc[survival_df['Arm']=='EVEROLIMUS']
survival_df_P = survival_df.loc[survival_df['Tumor_Sample_Primary_or_Metastas']=='PRIMARY']
survival_df_M = survival_df.loc[survival_df['Tumor_Sample_Primary_or_Metastas']=='METASTASIS']
# IMmotion151
len_samples = 823
data = pd.read_csv(f'{results_dir}/IMmotion151.ClinicalAndDeconvolution.csv', header=0, index_col='RNASEQ_SAMPLE_ID')
data = data.rename({'PFS_MONTHS': 'PFS_MO'}, axis=1)
data.loc[data['PFS_CENSOR'] == 0, 'PFS_EVENT'] = 1
data.loc[data['PFS_CENSOR'] == 1, 'PFS_EVENT'] = 0
cols = []
cols.extend(signature)
cols.extend(['AGE', 'SEX', 'PFS_MO', 'PFS_EVENT', 'ARM', 'PRIMARY_VS_METASTATIC', 'NMF_GROUP', 'MSKCC_RISK_SCORE', 'PDL1_IHC', 'OBJECTIVE_RESPONSE'])
survival_df = data[cols]
survival_df['Dataset'] = 'IMmotion151'
survival_df = survival_df[survival_df['Myeloid_Score'].notna()]
survival_df['NMF_GROUP'] = survival_df['NMF_GROUP'].astype(int)
survival_df_T_P = survival_df.loc[(survival_df['ARM']=='atezo_bev') & (survival_df['PRIMARY_VS_METASTATIC']=='PRIMARY')]
survival_df_T_M = survival_df.loc[(survival_df['ARM']=='atezo_bev') & (survival_df['PRIMARY_VS_METASTATIC']=='METASTATIC')]
survival_df_C_P = survival_df.loc[(survival_df['ARM']=='sunitinib') & (survival_df['PRIMARY_VS_METASTATIC']=='PRIMARY')]
survival_df_C_M = survival_df.loc[(survival_df['ARM']=='sunitinib') & (survival_df['PRIMARY_VS_METASTATIC']=='METASTATIC')]
#survival_df_T = survival_df.loc[survival_df['ARM']=='atezo_bev']
#survival_df_C = survival_df.loc[survival_df['ARM']=='sunitinib']
survival_df_P = survival_df.loc[survival_df['PRIMARY_VS_METASTATIC']=='PRIMARY']
survival_df_M = survival_df.loc[survival_df['PRIMARY_VS_METASTATIC']=='METASTATIC']
df = survival_df_C_P
sub_dir = 'immotion151'
plot_dir = f'{results_dir}/{sub_dir}/significant'
# Univariate Cox’s proportional hazard model
# PFS
met_cox_df = pd.DataFrame(
{'coef': [], 'exp(coef)': [], 'se(coef)': [], 'coef lower 95%': [], 'coef upper 95%': [],
'exp(coef) lower 95%': [], 'exp(coef) upper 95%': [], 'cmp to': [], 'z': [], 'p': [], '-log2(p)': []})
for i in signature:
cph = CoxPHFitter()
cph.fit(df, duration_col='PFS_MO', event_col='PFS_EVENT',
formula=f'{i}')
#plt.rcParams['figure.figsize'] = [10, 5]
#cph.plot()
#plt.savefig(f'{plot_dir}/{sub_dir}_{i}_uni_PFS_C_M.pdf')
#plt.close()
met_cox_df.loc[i]=cph.summary.loc[i]
met_cox_df.index = signature
met_cox_df['p_adj'] = multipletests(pvals=met_cox_df['p'], method="fdr_bh", alpha=0.05)[1]
met_cox_df.to_csv(f'{results_dir}/{sub_dir}/{sub_dir}_coxdf_uni_PFS_T_M.csv')
# OS
met_cox_df = pd.DataFrame(
{'coef': [], 'exp(coef)': [], 'se(coef)': [], 'coef lower 95%': [], 'coef upper 95%': [],
'exp(coef) lower 95%': [], 'exp(coef) upper 95%': [], 'cmp to': [], 'z': [], 'p': [], '-log2(p)': []})
for i in signature:
cph = CoxPHFitter()
cph.fit(df[df['OS_MO'].notna()], duration_col='OS_MO', event_col='OS_EVENT',
formula=f'{i}')
#plt.rcParams['figure.figsize'] = [10, 5]
#cph.plot()
#plt.savefig(f'{plot_dir}/{sub_dir}_{i}_uni_OS_C_P.pdf')
#plt.close()
met_cox_df.loc[i]=cph.summary.loc[i]
met_cox_df.index = signature
met_cox_df['p_adj'] = multipletests(pvals=met_cox_df['p'], method="fdr_bh", alpha=0.05)[1]
met_cox_df.to_csv(f'{results_dir}/{sub_dir}/{sub_dir}_coxdf_uni_OS_C_M.csv')
# Multivariate Cox’s proportional hazard model
# PFS
met_cox_df = pd.DataFrame(
{'coef': [], 'exp(coef)': [], 'se(coef)': [], 'coef lower 95%': [], 'coef upper 95%': [],
'exp(coef) lower 95%': [], 'exp(coef) upper 95%': [], 'cmp to': [], 'z': [], 'p': [], '-log2(p)': []})
for i in signature:
cph = CoxPHFitter()
cph.fit(df[df['AGE'].notna()], duration_col='PFS_MO', event_col='PFS_EVENT',
formula=f'{i}+AGE+SEX')
#plt.rcParams['figure.figsize'] = [10, 5]
#cph.plot()
#plt.savefig(f'{plot_dir}/{sub_dir}_{i}_multi_PFS_C_P.pdf')
#plt.close()
met_cox_df.loc[i]=cph.summary.loc[i]
met_cox_df.index = signature
met_cox_df['p_adj'] = multipletests(pvals=met_cox_df['p'], method="fdr_bh", alpha=0.05)[1]
met_cox_df.to_csv(f'{results_dir}/{sub_dir}/{sub_dir}_coxdf_multi_PFS_T_M.csv')
# OS
met_cox_df = pd.DataFrame(
{'coef': [], 'exp(coef)': [], 'se(coef)': [], 'coef lower 95%': [], 'coef upper 95%': [],
'exp(coef) lower 95%': [], 'exp(coef) upper 95%': [], 'cmp to': [], 'z': [], 'p': [], '-log2(p)': []})
for i in signature:
cph = CoxPHFitter()
cph.fit(df[df['OS_MO'].notna()][df['AGE'].notna()], duration_col='OS_MO', event_col='OS_EVENT',
formula=f'{i}+AGE+SEX')
#plt.rcParams['figure.figsize'] = [10, 5]
#cph.plot()
#plt.savefig(f'{plot_dir}/{sub_dir}_{i}_multi_OS_C_P.pdf')
#plt.close()
met_cox_df.loc[i]=cph.summary.loc[i]
met_cox_df.index = signature
met_cox_df['p_adj'] = multipletests(pvals=met_cox_df['p'], method="fdr_bh", alpha=0.05)[1]
met_cox_df.to_csv(f'{results_dir}/{sub_dir}/{sub_dir}_coxdf_multi_OS_C_M.csv')
# Check significant signatures
'braunetal'
'ImmuneScore' and "ESTIMATEScore" in multi_os_c_p and uni_os_c_p
'StromalScore' in multi_os_c_m
'Myeloid_Score' in uni_OS_c_m
'immotion151'
'Angio_Score' in multi_pfs_c_p
'StromalScore' in uni_pfs_c_m and multi_pfs_c_m
########### K-M plot
df = survival_df_C_P
sig = 'Angio_Score'
type = 'PFS'
if type == 'OS':
full_type = 'Overall Survival'
test = df[df['OS_MO'].notna()]
elif type == 'PFS':
full_type = 'Progression Free Survival'
test = df
plt.hist(test[sig])
plt.xlabel(f"{sig} scores")
plt.ylabel("Counts of samples")
plt.title(f'Histogram of {sig}')
plt.show()
print(test[sig].median()) # 3571.42526722469
score = test[sig].median()
T1 = test[test[sig] < score][f'{type}_MO']
T2 = test[test[sig] >= score][f'{type}_MO']
E1 = test[test[sig] < score][f'{type}_EVENT']
E2 = test[test[sig] >= score][f'{type}_EVENT']
kmf = KaplanMeierFitter(label=f"High {sig} score")
kmf.fit(T2, E2)
kmf.plot(show_censors=True, ci_show=False)
print(kmf.median_survival_time_)
kmf = KaplanMeierFitter(label=f"Low {sig} score")
kmf.fit(T1, E1)
kmf.plot(show_censors=True, ci_show=False)
print(kmf.median_survival_time_)
results = logrank_test(T1, T2, event_observed_A=E1, event_observed_B=E2)
print(results.p_value)
plt.xlabel(f"{full_type} (months)")
plt.ylabel("Survival Probability")
plt.show()
plt.savefig(f'{plot_dir}/KM_{sig}_{sub_dir}_OS_C_M.pdf')
# KM plots for all signatures
# split into 4 groups
sub_dir = 'immotion151'
df = survival_df_C
arm = 'C'
type = 'PFS'
if sub_dir == 'braunetal':
metastasis = 'Tumor_Sample_Primary_or_Metastas'
elif sub_dir == 'immotion151':
metastasis = 'PRIMARY_VS_METASTATIC'
if type == 'OS':
full_type = 'Overall Survival'
df = df[df['OS_MO'].notna()]
elif type == 'PFS':
full_type = 'Progression Free Survival'
km_dir = f'{results_dir}/{sub_dir}/KM_plots'
for sig in signature:
median_score = df[sig].median()
df[f'{sig}_group'] = f'Low {sig}'
df.loc[df[sig] >= median_score, f'{sig}_group'] = f'High {sig}'
df['group'] = (df[metastasis] + '_' + df[f'{sig}_group'])
df['group'] = df['group'].astype('category')
# fit and plot
ax = plt.subplot(111)
plt.rcParams['figure.figsize'] = [10, 10]
kmf = KaplanMeierFitter()
for name, group in df.groupby('group'):
kmf.fit(group[f"{type}_MO"], group[f"{type}_EVENT"], label=name)
kmf.plot_survival_function(ax=ax, ci_alpha = 0.1,ci_show = False, show_censors= True)
results = multivariate_logrank_test(df[f"{type}_MO"], df['group'], df[f"{type}_EVENT"])
print(results.p_value)
plt.xlabel(f"{full_type} (months)")
plt.ylabel("Survival Probability")
plt.title(f'{type} ~ {sig}')
plt.text(0.95, 0.02, "p = %.3f" % (results.p_value), horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
# add_at_risk_counts(kmf, rows_to_show=['At risk'])
plt.tight_layout()
plt.savefig(f'{km_dir}/KM_{sub_dir}_{sig}_{type}_{arm}.pdf')
#plt.show()
plt.close()
# Differential tests of signatures
#-------------------------------------------------------------------------------------------------------------------
sub_dir = 'braunetal'
plot_dir = f'{results_dir}/{sub_dir}/differential_plots'
for sig in signature:
statistic, p_value = scipy.stats.ranksums(survival_df_P[sig], survival_df_M[sig])
# Create a violin plot of the two groups
ax = plt.subplot(111)
sns.violinplot(data=[survival_df_P[sig], survival_df_M[sig]])
plt.xticks([0, 1], ['Primary', 'Metastasis'])
plt.ylabel(f'BraunEtAl {sig}')
plt.text(0.5, 0.8, "p = %.3f" % (p_value), horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
#plt.show()
plt.savefig(f'{plot_dir}/Violin_{sub_dir}_{sig}_P_M.pdf')
plt.close()
# Print the Wilcoxon rank-sum test statistic and p-value
print('Wilcoxon rank-sum test statistic:', statistic)
print('Wilcoxon rank-sum test p-value:', p_value)
# Results showed only Angio_Score have significant differences between primary and metastasis.
df = survival_df_T_M
type = 'OS'
arm = 'T'
if type == 'OS':
full_type = 'Overall Survival'
df = df[df['OS_MO'].notna()]
elif type == 'PFS':
full_type = 'Progression Free Survival'
for sig in signature:
median_score = df[sig].median()
df['group'] = f'Low {sig}'
df.loc[df[sig] >= median_score, 'group'] = f'High {sig}'
# fit and plot
ax = plt.subplot(111)
plt.rcParams['figure.figsize'] = [10, 10]
kmf = KaplanMeierFitter()
for name, group in df.groupby('group'):
kmf.fit(group[f"{type}_MO"], group[f"{type}_EVENT"], label=name)
kmf.plot_survival_function(ax=ax, ci_alpha = 0.1,ci_show = False, show_censors= True)
results = multivariate_logrank_test(df[f"{type}_MO"], df['group'], df[f"{type}_EVENT"])
print(results.p_value)
plt.xlabel(f"{full_type} (months)")
plt.ylabel("Survival Probability")
plt.title(f'{type} ~ {sig} in Metastasis_Treatment arm')
plt.text(0.92, 0.02, "p = %.3f" % (results.p_value), horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
# add_at_risk_counts(kmf, rows_to_show=['At risk'])
plt.tight_layout()
plt.savefig(f'{plot_dir}/KM_{sub_dir}_{sig}_{type}_{arm}_M.pdf')
#plt.show()
plt.close()
# None of the signatures have significant differences in the Primary_treatment arm.
# None of the signatures have significant differences in the Metastasis_treatment arm.
# cluster analysis in IMmotion151
#-------------------------------------------------------------------------------------------------------------------
sub_dir = 'immotion151'
plot_dir = f'{results_dir}/{sub_dir}/cluster_analysis'
df = survival_df_M
df.loc[df['ARM'] == 'sunitinib', 'ARM'] = 'control'
df.loc[df['ARM'] == 'atezo_bev', 'ARM'] = 'treatment'
met_cox_df = pd.DataFrame(
{'coef': [], 'exp(coef)': [], 'se(coef)': [], 'coef lower 95%': [], 'coef upper 95%': [],
'exp(coef) lower 95%': [], 'exp(coef) upper 95%': [], 'cmp to': [], 'z': [], 'p': [], '-log2(p)': []})
for i in range(1,8):
test = df.loc[df['NMF_GROUP'] == i]
cph = CoxPHFitter()
try:
cph.fit(test[test['PFS_MO'].notna()][test['AGE'].notna()], duration_col='PFS_MO', event_col='PFS_EVENT',
formula='ARM')
#plt.rcParams['figure.figsize'] = [10, 5]
#cph.plot()
#plt.savefig(f'{plot_dir}/{sub_dir}_{i}_multi_OS_C_P.pdf')
#plt.close()
met_cox_df.loc[i]=cph.summary.iloc[0]
except:
pass
met_cox_df.index = ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5', 'Cluster 6', 'Cluster 7']
met_cox_df['A/B mPFS'] = np.nan
met_cox_df['Sunitinib mPFS'] = np.nan
# combine groups
#-------------------------------------------------------------------------------------------------------------------
test = df.loc[(df['NMF_GROUP'] == 2) | (df['NMF_GROUP'] == 1) | (df['NMF_GROUP'] == 7)]
cph = CoxPHFitter()
cph.fit(test[test['PFS_MO'].notna()][test['AGE'].notna()], duration_col='PFS_MO', event_col='PFS_EVENT',
formula='ARM')
met_cox_df.loc['Cluster 1+2+7'] = cph.summary.iloc[0]
#K-M ------------------------------------------
type = 'PFS'
arm = 'C'
if arm == 'T':
df = survival_df_T_M
elif arm == 'C':
df = survival_df_C_M
# fit and plot
ax = plt.subplot(111)
plt.rcParams['figure.figsize'] = [10, 10]
kmf = KaplanMeierFitter()
i=0
for name, group in df.groupby('NMF_GROUP'):
kmf.fit(group[f"{type}_MO"], group[f"{type}_EVENT"], label=name)
kmf.plot_survival_function(ax=ax, ci_alpha=0.1, ci_show=False, show_censors=True)
print(kmf.median_survival_time_)
print(name)
met_cox_df['Sunitinib mPFS'].iloc[i] = kmf.median_survival_time_
i+=1
results = multivariate_logrank_test(df[f"{type}_MO"], df['NMF_GROUP'], df[f"{type}_EVENT"])
print(results.p_value)
plt.xlabel("Progression Free Survival (months)")
plt.ylabel("Survival Probability")
plt.title(f'Metastasis_control arm')
plt.text(0.92, 0.02, "p = %.3f" % (results.p_value), horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
# add_at_risk_counts(kmf, rows_to_show=['At risk'])
plt.tight_layout()
plt.savefig(f'{plot_dir}/KM_{sub_dir}_cluster_{arm}_M.pdf')
#plt.show()
plt.close()
# combine groups
#------------------------------------------
group = df.loc[(df['NMF_GROUP'] == 1) | (df['NMF_GROUP'] == 2)]
kmf = KaplanMeierFitter()
kmf.fit(group[f"{type}_MO"], group[f"{type}_EVENT"])
met_cox_df['Sunitinib mPFS'].iloc[7] = kmf.median_survival_time_
met_cox_df.rename(columns={'exp(coef)': 'HR', 'exp(coef) lower 95%': 'HR lower 95%', 'exp(coef) upper 95%': 'HR upper 95%'}, inplace=True)
met_cox_df.drop(['coef', 'se(coef)', 'coef lower 95%', 'coef upper 95%', 'cmp to', 'z', '-log2(p)'], axis=1, inplace=True)
met_cox_df.to_csv(f'{plot_dir}/cluster_analysis_Metastasis.csv')
# make forest plot
fig, ax = plt.subplots(figsize=(10, 5))
for i in range(met_cox_df.shape[0]):
ax.plot([met_cox_df['HR lower 95%'].iloc[i], met_cox_df['HR upper 95%'].iloc[i]], [i, i], color='k', linewidth=1.5)
ax.plot(met_cox_df['HR'].iloc[i], i, 'o', color='k', markersize=8)
ax.axvline(x=1, ymin=i - 0.1, ymax=i + 0.1, color='k', linewidth=0.5)
# Add labels to plot
ax.set_yticks(range(met_cox_df.shape[0]))
ax.set_yticklabels(met_cox_df.index)
ax.set_xlabel('HR (95% CI)')
ax.axvline(x=1, color='k', linestyle='--')
# plt.show()
plt.savefig(f'{plot_dir}/forest_plot_Metastasis.pdf')
plt.close()
# ------------------------May 19----------------------------------
# IMmotion151
# (1)
rna = pd.read_csv('/juno/work/reznik/xiea1/MIRTH/RNA_raw_imputation/IMmotion151.csv', header=0, index_col=0)
test = pd.concat([rna, survival_df], axis=1)
met_wilcox_df = pd.DataFrame({'log2fc': [], 'statistic': [], 'p': []})
for i in list(test.iloc[:,:rna.shape[1]].columns):
metastasis = test.loc[test['PRIMARY_VS_METASTATIC'] == 'METASTATIC', i]
primary = test.loc[(test['PRIMARY_VS_METASTATIC'] == 'PRIMARY', i)]
try:
met_wilcox_df.loc[i, 'log2fc'] = np.log2(metastasis.mean()/(primary.mean()))
met_wilcox_df.loc[i, 'statistic'] = scipy.stats.ranksums(metastasis, primary).statistic
met_wilcox_df.loc[i, 'p'] = scipy.stats.ranksums(metastasis, primary).pvalue
except:
pass
met_wilcox_df['p_adj'] = multipletests(pvals=met_wilcox_df['p'], method="fdr_bh", alpha=0.1)[1]
met_wilcox_df.to_csv(f'{results_dir}/immotion151/primary_met/differential_genes_statistic.csv')
print(met_wilcox_df.loc[met_wilcox_df['p_adj'] < 0.1].shape[0]/met_wilcox_df.shape[0])
# (2)
sub_dir = 'immotion151'
plot_dir = f'{results_dir}/{sub_dir}/primary_met'
for sig in signature:
statistic, p_value = scipy.stats.ranksums(survival_df_P[sig], survival_df_M[sig])
# Create a violin plot of the two groups
ax = plt.subplot(111)
sns.boxplot(data=[survival_df_P[sig], survival_df_M[sig]])
plt.xticks([0, 1], ['Primary', 'Metastasis'])
plt.ylabel(f'IMmotion151 {sig}')
plt.text(0.5, 0.8, "p = %.3f" % (p_value), horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
#plt.show()
plt.savefig(f'{plot_dir}/Violin_{sub_dir}_{sig}_P_M.pdf')
plt.close()
# Print the Wilcoxon rank-sum test statistic and p-value
print('Wilcoxon rank-sum test statistic:', statistic)
print('Wilcoxon rank-sum test p-value:', p_value)
# (3)
data = {
'category1': ['Cluster 1', 'Cluster 1', 'Cluster 2', 'Cluster 2', 'Cluster 3', 'Cluster 3',
'Cluster 4', 'Cluster 4', 'Cluster 5', 'Cluster 5', 'Cluster 6', 'Cluster 6',
'Cluster 7', 'Cluster 7'],
'category2': ['Primary', 'Metastasis', 'Primary', 'Metastasis', 'Primary', 'Metastasis',
'Primary', 'Metastasis', 'Primary', 'Metastasis', 'Primary', 'Metastasis',
'Primary', 'Metastasis'],
'value': [survival_df[survival_df['NMF_GROUP'] == 1][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 1][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 2][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 2][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 3][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 3][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 4][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 4][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 5][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 5][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 6][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 6][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 7][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0],
survival_df[survival_df['NMF_GROUP'] == 7][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0]
]
}
df = pd.DataFrame(data)
sns.barplot(x='category1', y='value', hue='category2', data=df)
plt.xlabel('Cluster')
plt.ylabel('# of Patients')
plt.title('Frequency of Primary and Metastatic Samples in Clusters')
plt.savefig(f'{plot_dir}/Cluster_frequency.pdf')
plt.close()
# percentage of metastatic samples in each cluster
data = {
'category1': ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5', 'Cluster 6', 'Cluster 7'],
'value': [(survival_df[survival_df['NMF_GROUP'] == 1][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0]
)/(survival_df[survival_df['NMF_GROUP'] == 1][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0]),
(survival_df[survival_df['NMF_GROUP'] == 2][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0]
)/(survival_df[survival_df['NMF_GROUP'] == 2][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0]),
(survival_df[survival_df['NMF_GROUP'] == 3][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0]
)/(survival_df[survival_df['NMF_GROUP'] == 3][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0]),
(survival_df[survival_df['NMF_GROUP'] == 4][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0]
)/(survival_df[survival_df['NMF_GROUP'] == 4][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0]),
(survival_df[survival_df['NMF_GROUP'] == 5][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0]
)/(survival_df[survival_df['NMF_GROUP'] == 5][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0]),
(survival_df[survival_df['NMF_GROUP'] == 6][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0]
)/(survival_df[survival_df['NMF_GROUP'] == 6][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0]),
(survival_df[survival_df['NMF_GROUP'] == 7][survival_df['PRIMARY_VS_METASTATIC'] == 'METASTATIC'].shape[0]
)/(survival_df[survival_df['NMF_GROUP'] == 7][survival_df['PRIMARY_VS_METASTATIC'] == 'PRIMARY'].shape[0])
]
}
df = pd.DataFrame(data).sort_values('value', ascending=False)
sns.barplot(x='category1', y='value', data=df, color='red')
plt.xlabel('Cluster')
plt.ylabel('Percentage of Metastatic Samples')
plt.title('Percentage of Metastatic Samples in Clusters')
plt.savefig(f'{plot_dir}/Cluster_metastatic_frequency.pdf')
plt.close()
# (4)
df = survival_df_C
type = 'PFS'
if type == 'OS':
full_type = 'Overall Survival'
test = df[df['OS_MO'].notna()]
elif type == 'PFS':
full_type = 'Progression Free Survival'
test = df
T1 = test[test['PRIMARY_VS_METASTATIC'] == 'PRIMARY'][f'{type}_MO']
T2 = test[test['PRIMARY_VS_METASTATIC'] == 'METASTATIC'][f'{type}_MO']
E1 = test[test['PRIMARY_VS_METASTATIC'] == 'PRIMARY'][f'{type}_EVENT']
E2 = test[test['PRIMARY_VS_METASTATIC'] == 'METASTATIC'][f'{type}_EVENT']
kmf = KaplanMeierFitter(label="Metastasis")
kmf.fit(T2, E2)
kmf.plot(show_censors=True, ci_show=False)
print(kmf.median_survival_time_)
kmf = KaplanMeierFitter(label="Primary")
kmf.fit(T1, E1)
kmf.plot(show_censors=True, ci_show=False)
print(kmf.median_survival_time_)
results = logrank_test(T1, T2, event_observed_A=E1, event_observed_B=E2)
print(results.p_value)
plt.xlabel(f"{full_type} (months)")
plt.ylabel("Survival Probability")
plt.text(0.92, 0.02, "p = %.3f" % (results.p_value), horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
plt.show()
plt.savefig(f'{plot_dir}/KM_{sub_dir}_PFS_control_arm.pdf')
plt.close()
# Braunetal
# (1)
rna = pd.read_csv('/juno/work/reznik/xiea1/MIRTH/RNA_raw_imputation/BraunEtAl.csv', header=0, index_col=0)
test = pd.concat([rna, survival_df], axis=1)
met_wilcox_df = pd.DataFrame({'log2fc': [], 'statistic':[], 'p': []})
for i in list(test.iloc[:, :rna.shape[1]].columns):
metastasis = test.loc[test['Tumor_Sample_Primary_or_Metastas']=='METASTASIS', i]
primary = test.loc[(test['Tumor_Sample_Primary_or_Metastas']=='PRIMARY', i)]
try:
met_wilcox_df.loc[i, 'log2fc'] = np.log2(metastasis.mean() / (primary.mean()))
met_wilcox_df.loc[i, 'statistic'] = scipy.stats.ranksums(metastasis, primary).statistic
met_wilcox_df.loc[i, 'p'] = scipy.stats.ranksums(metastasis, primary).pvalue
except:
pass
met_wilcox_df['p_adj'] = multipletests(pvals=met_wilcox_df['p'], method="fdr_bh", alpha=0.1)[1]
met_wilcox_df.to_csv(f'{results_dir}/braunetal/primary_met/differential_genes_statistic.csv')
print(met_wilcox_df.loc[met_wilcox_df['p_adj'] < 0.1].shape[0] / met_wilcox_df.shape[0])
# (4)
sub_dir = 'braunetal'
df = survival_df_C
type = 'OS'
if type == 'OS':
full_type = 'Overall Survival'
test = df[df['OS_MO'].notna()]
elif type == 'PFS':
full_type = 'Progression Free Survival'
test = df
T1 = test[test['Tumor_Sample_Primary_or_Metastas']=='PRIMARY'][f'{type}_MO']
T2 = test[test['Tumor_Sample_Primary_or_Metastas']=='METASTASIS'][f'{type}_MO']
E1 = test[test['Tumor_Sample_Primary_or_Metastas']=='PRIMARY'][f'{type}_EVENT']
E2 = test[test['Tumor_Sample_Primary_or_Metastas']=='METASTASIS'][f'{type}_EVENT']
kmf = KaplanMeierFitter(label="Metastasis")
kmf.fit(T2, E2)
kmf.plot(show_censors=True, ci_show=False)
print(kmf.median_survival_time_)
kmf = KaplanMeierFitter(label="Primary")
kmf.fit(T1, E1)
kmf.plot(show_censors=True, ci_show=False)
print(kmf.median_survival_time_)
results = logrank_test(T1, T2, event_observed_A=E1, event_observed_B=E2)
print(results.p_value)
plt.xlabel(f"{full_type} (months)")
plt.ylabel("Survival Probability")
plt.text(0.92, 0.02, "p = %.3f" % (results.p_value), horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
plt.show()
plt.savefig(f'{results_dir}/braunetal/primary_met/KM_{sub_dir}_OS_control_arm.pdf')
plt.close()
# --------------------------------------------- June 1 ---------------------------------------------
# Immotion151
rna = pd.read_csv('/juno/work/reznik/xiea1/MIRTH/RNA_raw_imputation/IMmotion151.csv', header=0, index_col=0)
test = pd.concat([rna, survival_df_C_P], axis=1, join='inner')
met_wilcox_df = pd.DataFrame({'log2fc': [], 'p': []})
for i in list(test.iloc[:,:rna.shape[1]].columns):
R = test.loc[(test['OBJECTIVE_RESPONSE'] == 'PR') | (test['OBJECTIVE_RESPONSE'] == 'CR'), i]
NR = test.loc[(test['OBJECTIVE_RESPONSE'] == 'PD') | (test['OBJECTIVE_RESPONSE'] == 'SD'), i]
#scipy.stats.ttest_ind(response, non_response)
try:
met_wilcox_df.loc[i, 'log2fc'] = np.log2(R.mean()/(NR.mean()))
met_wilcox_df.loc[i, 'p'] = scipy.stats.ranksums(R, NR).pvalue
except:
pass
met_wilcox_df['p_adj'] = multipletests(pvals=met_wilcox_df['p'], method="fdr_bh", alpha=0.1)[1]
met_wilcox_df.to_csv(f'{results_dir}/immotion151/primary_met/differential_genes_response_C_P.csv')
print(met_wilcox_df.loc[met_wilcox_df['p_adj'] < 0.1].shape[0]/met_wilcox_df.shape[0])
# Braunetal
rna = pd.read_csv('/juno/work/reznik/xiea1/MIRTH/RNA_raw_imputation/BraunEtAl.csv', header=0, index_col=0)
test = pd.concat([rna, survival_df_T_P], axis=1, join='inner')
met_wilcox_df = pd.DataFrame({'log2fc': [], 'p': []})
for i in list(test.iloc[:,:rna.shape[1]].columns):
R = test.loc[(test['ORR'] == 'PR') | (test['ORR'] == 'CR') | (test['ORR'] == 'CRPR'), i]
NR = test.loc[(test['ORR'] == 'PD') | (test['ORR'] == 'SD'), i]
#scipy.stats.ttest_ind(response, non_response)
try:
met_wilcox_df.loc[i, 'log2fc'] = np.log2(R.mean()/(NR.mean()))
met_wilcox_df.loc[i, 'p'] = scipy.stats.ranksums(R, NR).pvalue
except:
pass
met_wilcox_df['p_adj'] = multipletests(pvals=met_wilcox_df['p'], method="fdr_bh", alpha=0.1)[1]
met_wilcox_df.to_csv(f'{results_dir}/braunetal/primary_met/differential_genes_response_T_P.csv')
print(met_wilcox_df.loc[met_wilcox_df['p_adj'] < 0.1].shape[0]/met_wilcox_df.shape[0])