# MPI Operator [](https://github.com/kubeflow/mpi-operator/actions?query=event%3Apush+branch%3Amaster) [](https://hub.docker.com/r/mpioperator/mpi-operator) The MPI Operator makes it easy to run allreduce-style distributed training on Kubernetes. Please check out [this blog post](https://medium.com/kubeflow/introduction-to-kubeflow-mpi-operator-and-industry-adoption-296d5f2e6edc) for an introduction to MPI Operator and its industry adoption. ## Installation You can deploy the operator with default settings by running the following commands: - Latest Development Version ```shell kubectl apply -f https://raw.githubusercontent.com/kubeflow/mpi-operator/master/deploy/v2beta1/mpi-operator.yaml ``` - Release Version ```shell kubectl apply -f https://raw.githubusercontent.com/kubeflow/mpi-operator/v0.4.0/deploy/v2beta1/mpi-operator.yaml ``` Alternatively, follow the [getting started guide](https://www.kubeflow.org/docs/started/getting-started/) to deploy Kubeflow. An alpha version of MPI support was introduced with Kubeflow 0.2.0. You must be using a version of Kubeflow newer than 0.2.0. You can check whether the MPI Job custom resource is installed via: ``` kubectl get crd ``` The output should include `mpijobs.kubeflow.org` like the following: ``` NAME AGE ... mpijobs.kubeflow.org 4d ... ``` If it is not included, you can add it as follows using [kustomize](https://github.com/kubernetes-sigs/kustomize): ```bash git clone https://github.com/kubeflow/mpi-operator cd mpi-operator kustomize build manifests/overlays/kubeflow | kubectl apply -f - ``` Note that since Kubernetes v1.14, `kustomize` became a subcommand in `kubectl` so you can also run the following command instead: Since Kubernetes v1.21, you can use: ```bash kubectl apply -k manifests/overlays/kubeflow ``` ```bash kubectl kustomize base | kubectl apply -f - ``` ## Creating an MPI Job You can create an MPI job by defining an `MPIJob` config file. See [TensorFlow benchmark example](examples/v2beta1/tensorflow-benchmarks/tensorflow-benchmarks.yaml) config file for launching a multi-node TensorFlow benchmark training job. You may change the config file based on your requirements. ``` cat examples/v2beta1/tensorflow-benchmarks/tensorflow-benchmarks.yaml ``` Deploy the `MPIJob` resource to start training: ``` kubectl apply -f examples/v2beta1/tensorflow-benchmarks/tensorflow-benchmarks.yaml ``` ## Monitoring an MPI Job Once the `MPIJob` resource is created, you should now be able to see the created pods matching the specified number of GPUs. You can also monitor the job status from the status section. Here is sample output when the job is successfully completed. ``` kubectl get -o yaml mpijobs tensorflow-benchmarks ``` ``` apiVersion: kubeflow.org/v2beta1 kind: MPIJob metadata: creationTimestamp: "2019-07-09T22:15:51Z" generation: 1 name: tensorflow-benchmarks namespace: default resourceVersion: "5645868" selfLink: /apis/kubeflow.org/v1alpha2/namespaces/default/mpijobs/tensorflow-benchmarks uid: 1c5b470f-a297-11e9-964d-88d7f67c6e6d spec: runPolicy: cleanPodPolicy: Running mpiReplicaSpecs: Launcher: replicas: 1 template: spec: containers: - command: - mpirun - --allow-run-as-root - -np - "2" - -bind-to - none - -map-by - slot - -x - NCCL_DEBUG=INFO - -x - LD_LIBRARY_PATH - -x - PATH - -mca - pml - ob1 - -mca - btl - ^openib - python - scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py - --model=resnet101 - --batch_size=64 - --variable_update=horovod image: mpioperator/tensorflow-benchmarks:latest name: tensorflow-benchmarks Worker: replicas: 1 template: spec: containers: - image: mpioperator/tensorflow-benchmarks:latest name: tensorflow-benchmarks resources: limits: nvidia.com/gpu: 2 slotsPerWorker: 2 status: completionTime: "2019-07-09T22:17:06Z" conditions: - lastTransitionTime: "2019-07-09T22:15:51Z" lastUpdateTime: "2019-07-09T22:15:51Z" message: MPIJob default/tensorflow-benchmarks is created. reason: MPIJobCreated status: "True" type: Created - lastTransitionTime: "2019-07-09T22:15:54Z" lastUpdateTime: "2019-07-09T22:15:54Z" message: MPIJob default/tensorflow-benchmarks is running. reason: MPIJobRunning status: "False" type: Running - lastTransitionTime: "2019-07-09T22:17:06Z" lastUpdateTime: "2019-07-09T22:17:06Z" message: MPIJob default/tensorflow-benchmarks successfully completed. reason: MPIJobSucceeded status: "True" type: Succeeded replicaStatuses: Launcher: succeeded: 1 Worker: {} startTime: "2019-07-09T22:15:51Z" ``` Training should run for 100 steps and takes a few minutes on a GPU cluster. You can inspect the logs to see the training progress. When the job starts, access the logs from the `launcher` pod: ``` PODNAME=$(kubectl get pods -l training.kubeflow.org/job-name=tensorflow-benchmarks,training.kubeflow.org/job-role=launcher -o name) kubectl logs -f ${PODNAME} ``` ``` TensorFlow: 1.14 Model: resnet101 Dataset: imagenet (synthetic) Mode: training SingleSess: False Batch size: 128 global 64 per device Num batches: 100 Num epochs: 0.01 Devices: ['horovod/gpu:0', 'horovod/gpu:1'] NUMA bind: False Data format: NCHW Optimizer: sgd Variables: horovod ... 40 images/sec: 154.4 +/- 0.7 (jitter = 4.0) 8.280 40 images/sec: 154.4 +/- 0.7 (jitter = 4.1) 8.482 50 images/sec: 154.8 +/- 0.6 (jitter = 4.0) 8.397 50 images/sec: 154.8 +/- 0.6 (jitter = 4.2) 8.450 60 images/sec: 154.5 +/- 0.5 (jitter = 4.1) 8.321 60 images/sec: 154.5 +/- 0.5 (jitter = 4.4) 8.349 70 images/sec: 154.5 +/- 0.5 (jitter = 4.0) 8.433 70 images/sec: 154.5 +/- 0.5 (jitter = 4.4) 8.430 80 images/sec: 154.8 +/- 0.4 (jitter = 3.6) 8.199 80 images/sec: 154.8 +/- 0.4 (jitter = 3.8) 8.404 90 images/sec: 154.6 +/- 0.4 (jitter = 3.7) 8.418 90 images/sec: 154.6 +/- 0.4 (jitter = 3.6) 8.459 100 images/sec: 154.2 +/- 0.4 (jitter = 4.0) 8.372 100 images/sec: 154.2 +/- 0.4 (jitter = 4.0) 8.542 ---------------------------------------------------------------- total images/sec: 308.27 ``` For a sample that uses Intel MPI, see: ```bash cat examples/pi/pi-intel.yaml ``` For a sample that uses MPICH, see: ```bash cat examples/pi/pi-mpich.yaml ``` ## Exposed Metrics | Metric name | Metric type | Description | Labels | | ----------- | ----------- | ----------- | ------ | |mpi\_operator\_jobs\_created\_total | Counter | Counts number of MPI jobs created | | |mpi\_operator\_jobs\_successful\_total | Counter | Counts number of MPI jobs successful | | |mpi\_operator\_jobs\_failed\_total | Counter | Counts number of MPI jobs failed| | |mpi\_operator\_job\_info | Gauge | Information about MPIJob | `launcher`=<launcher-pod-name> <br> `namespace`=<job-namespace> | ### Join Metrics With [kube-state-metrics](https://github.com/kubernetes/kube-state-metrics), one can join metrics by labels. For example `kube_pod_info * on(pod,namespace) group_left label_replace(mpi_operator_job_infos, "pod", "$0", "launcher", ".*")` ## Docker Images We push Docker images of [mpioperator on Dockerhub](https://hub.docker.com/u/mpioperator) for every release. You can use the following Dockerfile to build the image yourself: - [mpi-operator](https://github.com/kubeflow/mpi-operator/blob/master/Dockerfile) Alternative, you can build the image using make: ```bash make RELEASE_VERSION=dev IMAGE_NAME=registry.example.com/mpi-operator images ``` This will produce an image with the tag `registry.example.com/mpi-operator:dev`. ## Contributing Learn more in [CONTRIBUTING](https://github.com/kubeflow/mpi-operator/blob/master/CONTRIBUTING.md).