- Python (3.5+)
- OpenVINO (optional)
git clone https://github.com/opencv/cvat
Optionally, install a virtual environment:
python -m pip install virtualenv
python -m virtualenv venv
. venv/bin/activate
Then install all dependencies:
while read -r p; do pip install $p; done < requirements.txt
If you're working inside CVAT environment:
. .env/bin/activate
while read -r p; do pip install $p; done < datumaro/requirements.txt
The directory containing Datumaro should be in the
PYTHONPATH
environment variable orcvat/datumaro/
should be the current directory.
datum --help
python -m datumaro --help
python datumaro/ --help
python datum.py --help
import datumaro
It is expected that all Datumaro functionality is covered and checked by
unit tests. Tests are placed in tests/
directory.
To run tests use:
python -m unittest discover -s tests
If you're working inside CVAT environment, you can also use:
python manage.py test datumaro/
Use Docker as an example. Basically, the interface is divided on contexts and single commands. Contexts are semantically grouped commands, related to a single topic or target. Single commands are handy shorter alternatives for the most used commands and also special commands, which are hard to be put into any specific context.
- The diagram above was created with FreeMind
Model-View-ViewModel (MVVM) UI pattern is used.
├── [datumaro module]
└── [project folder]
├── .datumaro/
| ├── config.yml
│ ├── .git/
│ ├── importers/
│ │ ├── custom_format_importer1.py
│ │ └── ...
│ ├── statistics/
│ │ ├── custom_statistic1.py
│ │ └── ...
│ ├── visualizers/
│ │ ├── custom_visualizer1.py
│ │ └── ...
│ └── extractors/
│ ├── custom_extractor1.py
│ └── ...
├── dataset/
└── sources/
├── source1
└── ...